
ABSTRACT 
We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under 
non-normality. These test statistics have limit distributions characterized by eigenvalues whose esti
mates are highly unstable and biased in known directions. To take this into account, we design 
model-based trend predictions to approximate the population eigenvalues. We evaluate the new pro
cedures in a large-scale simulation study with three confirmatory factor models of varying size (10, 20, 
or 40 manifest variables) and six non-normal data conditions. The eigenvalues in each simulated data
set are available in a database. Some of the new procedures markedly outperform presently available 
methods. We demonstrate how the new tests are calculated with a new R package and provide prac
tical recommendations.

KEYWORDS 
Bootstrap; covariance 
structure analysis; factor 
model; goodness-of-fit test; 
non-normality; weighted 
sum of chi-squares   

Goodness-of-fit testing is central when assessing whether a 
proposed measurement instrument can be used to under
stand latent psychological traits and processes. Researchers 
often evaluate their instruments using factor modeling 
where the trait is considered a latent variable that dictates 
the correlational structure among items. Model fit statistics 
and indices are then calculated, from which the researcher 
can assess whether the model is well specified. Only in a 
well-specified model can parameters such as factor loadings 
and correlations be properly interpreted to gain insight into 
the workings of a proposed instrument and the associations 
between latent traits.

In this article, we propose and study new classes of good
ness-of-fit tests for structural equation models (SEMs) and 
confirmatory factor models under non-normality. As the 
sample size increases, commonly used test statistics have 
distributions that converge to distributions that are charac
terized by the eigenvalues of a certain matrix. Once these 
eigenvalues are estimated, p-values for the goodness of fit 
test can in principle be directly calculated. Unfortunately, as 
illustrated in a later section, empirical estimates of the 
eigenvalues are highly unstable and biased. We present an 
estimation theory for the eigenvalues and propose to stabil
ize and bias-correct the estimated eigenvalues using model- 
based trend predictions. This theory is based on population 
eigenvalues but allows for penalized estimation procedures 
where the penalization function can be chosen. Two classes 
of prediction models are investigated, where the trend for 
the eigenvalues may be piece-wise constant or linear. We 
design penalization functions for these classes that take into 
account the known systematic bias of eigenvalue estimates.

We start our article with a review goodness-of-fit testing 
in SEM, including traditional and new procedures, under 
both normal and non-normal data. Then we present our 
new tests based on penalized estimation using an illustrative 
example. Next, we present a large-scale Monte Carlo study 
to evaluate the procedures in a variety of conditions with 
varying sample sizes, model sizes, and data distributions. 
This is followed by a section that summarizes the results of 
the Monte Carlo simulations. Afterward, we demonstrate 
how to perform the tests using the new R (R Core Team, 
2023) package semTests (Moss, 2024). We end with a dis
cussion of our findings, where we also outline limitations 
and future research ideas.

The online supplementary material contains an analytical 
framework for the new tests, software snippets, mathemat
ical deductions, and further simulation results.

1. Goodness-of-Fit Tests in Covariance Structure 
Analysis

Factor and structural equation models imply structural con
straints R ¼ RðhÞ on the covariance matrix R of the 
observed variables X ¼ ðX1, . . . , XpÞ: Model parameters are 
contained in the q-dimensional vector h and are estimated 
by minimizing a discrepancy function that measures the dis
tance between the observed covariance matrix S from n 
observations and the model-implied covariance matrix RðhÞ:

For instance, in confirmatory factor analysis, the model 
is specified by the equations x ¼ Kf þ e where x ¼
ðx1, . . . , xpÞ

0 is a p-dimensional vector of observed variables, 
f is a latent vector, and e is a p-dimensional vector of 
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residuals, which are uncorrelated with f (Bollen, 1989). The 
elements in K, some of which are constrained to zero, are 
referred to as factor loadings. Additional constraints regard
ing the elements of K, U and W, are needed for model iden
tification, where U and W are the covariance matrices of the 
latent and residual variables, respectively. The model implies 
the following covariance structure among the observed vari
ables: RðhÞ ¼ KUK0 þW, where h contains all the estimated 
parameters in K, U, and W:

The most popular estimation method is normal-theory 
maximum likelihood (NTML), where the discrepancy func
tion is (Bollen, 1989)

FNTML S, RðhÞð Þ ¼ ln jRðhÞj − ln jSj − tr SRðhÞ−1� �
− p:

The corresponding estimator ĥNTML is the minimizer of 
FNTML over h. We remark that this estimator is consistent 
even under non-normal data.

1.1. Tests for Normal Data

Most tests for correct model specification in SEM are based 
on some model fit test statistic TNT, often referred to as a v2 

statistic, whose sampling distribution can be approximated by 
a chi-square distribution when data are multivariate normally 
distributed and the model specification is correct. Popular 
model fit indices such as RMSEA (Steiger et al., 1985) and 
CFI (Bentler, 1990) also depend on a TNT that is approxi
mately chi-square distributed under normality.

The most commonly used candidate for TNT, reported by 
default in most software packages, is TML ¼ ðn − 
1ÞFNTMLðS, RðĥNTMLÞÞ: Under correct model specification and 
normal data, TML converges to a chi-square distribution with 
d ¼ pðpþ 1Þ=2 − q degrees of freedom, where q is the num
ber of freely estimated model parameters (J€oreskog, 1969).

Another candidate for TNT is the reweighted least squares 
(RLS) statistic

TRLS ¼
N
2

tr ðS − RðĥÞÞRðĥÞ
−1

� �

:

Here ĥ is any consistent estimator, e.g., ĥNTML: Just as 
TML, TRLS is asymptotically chi-square distributed with d 
degrees of freedom under correct model specification and 
normal data (Browne, 1974). However, recent work by 
Hayakawa (2019) and Zheng and Bentler (2022) suggests that 
TRLS converges to its limiting distribution quicker than TML:

That is, at a given sample size with normal data, TRLS was 
found to better maintain Type I error control than TML:

1.2. Robustified Tests for Non-Normal Data

The chi-square sampling distribution of TNT is distorted 
when the data fails to be normal (Micceri, 1989; Cain et al., 
2017). Under correct model specification, its asymptotic dis
tribution is a weighted sum of independent chi-square varia
bles, each with one degree of freedom:

TNT !
D

n!1

Xd

j¼1
kjZ2

j , Z1, . . . , Zd � Nð0, 1Þ IID (1) 

where the weights k ¼ ðk1, . . . , kdÞ
0 are the non-zero eigen

values of the matrix product UC: The matrix U depends on 
model characteristics. Let D ¼

orðhÞ

oh
, where rðhÞ ¼

vechðRðhÞÞ is the half-vectorization of RðhÞ, i.e., the vector 
obtained by stacking the columns of the square matrix RðhÞ
one underneath the other, after eliminating all elements 
above the diagonal. Then U ¼W − WD D0WDf g

−1
D0W, 

where W ¼ 1=2D0pðRðhÞ
−1
� RðhÞ

−1
ÞDp (Satorra and 

Bentler, 1994), and Dp is the duplication matrix (Magnus 
and Neudecker, 1999). The matrix C is the asymptotic 
covariance matrix of the sample covariances and depends 
solely on the data distribution.

To make use of eq. (1), consistent estimates, i.e., esti
mates that converge in probability, of the quantities U, C 

and k must be available. Since eigenvalues are the roots of a 
polynomial, they are continuous functions of the polynomial 
coefficients (Harris and Martin, 1987), and we may estimate 
k consistently by k̂ given as the eigenvalues of Û Ĉ, pro
vided U and C are consistently estimated by Û and Ĉ 

respectively. A consistent estimator Û of U can be obtained 
by replacing h with an estimate ĥ: Under standard assump
tions, ĥ will be consistent (Satorra, 1989), implying that Û 
is consistent as long as the mapping h7!UðhÞ is continuous, 
which we will assume. We will also assume that consistent 
estimators of C are available. A standard estimator of C is 
the moment-based ĈA defined in e.g., Section 3 of Browne, 
1984, which is consistent as long as the observations have 
finite eight order moments.

The most well-known robustification procedure is the 
Satorra–Bentler (SB) scaling (Satorra and Bentler, 1988) and 
involves scaling TNT by a factor so that the asymptotic 
mean of the resulting statistic matches the expectation d of 
the nominal chi-square distribution:

TSB ¼
d

trðÛ ĈÞ
TNT: (2) 

This results in a p-value given by

Pðv2
d > tÞt¼TSB

, 

where v2
d is a chi-square distribution with d degrees of 

freedom.
Asparouhov and Muth�en (2010) proposed to scale and 

shift (SS) the statistic TNT,

TSS ¼ aTNT þ d − b, 

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d=trððÛ ĈÞ
2
Þ

q

and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðtrðÛ ĈÞÞ
2
=trððÛ ĈÞ

2
Þ

q

:

The statistic TSS has the same asymptotic mean and variance as 
the reference chi-square distribution. Similarly to the SB-pro
cedure, the resulting p-value is

Pðv2
d > tÞt¼TSS

:

Monte Carlo studies (e.g., Foldnes and Olsson, 2015) 
report that TSB tend to overreject and TSS tend to underre
ject correctly specified models.

Eigenvalue block averaging (EBA) is a recent effort to 
improve upon TSB and TSS by defining a flexible class of 
test statistics (Foldnes and Grønneberg, 2017). First, the d 
non-zero eigenvalues of Û Ĉ are sorted in increasing order, 
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k̂1 � k̂2 � . . . � k̂d: These eigenvalues are then grouped 
into several equally sized bins, or blocks, and the block aver
ages are calculated. Then, a vector of weights ~k1, . . . , ~kd is 
constructed by replacing the eigenvalues with their block 
averages. For instance, in two-block EBA, denoted EBA2, 
the first block has

~k1 ¼ � � � ¼ ~kdd=2e ¼
1
dd=2e

Xdd=2e

j¼1
k̂j, 

where d:e denotes rounding up to the nearest integer, while 
the second block has

~kdd=2eþ1 ¼ � � � ¼ ~kd ¼
1

d − dd=2e

Xd

j¼dd=2eþ1

k̂j:

The corresponding p-value for the goodness-of-fit test is 
then obtained as

p̂EBA2 ¼ HðTNT; ~k1, . . . , ~kdÞ, (3) 

where

Hðt; l1, . . . , ldÞ ¼ P
Xd

j¼1
ljZ2

j > t

0

@

1

A (4) 

for independent standard normal variables Z1, . . . , Zd:

For a single block, each ~kj for j ¼ 1, . . . , d equals the 
average of all estimated eigenvalues k̂1, . . . , k̂d: That is,

~kj ¼ �k ¼ d−1
Xd

i¼1
k̂i 

for j ¼ 1, . . . , d: The sum of the eigenvalues of a square 
matrix equals its trace. Therefore, �k ¼ trðÛ ĈÞ=d, and by 
eq. (2), we have

TNT=�k ¼ TSB: (5) 

Since

Hðt; l, . . . , lÞ ¼ P
Xd

j¼1
lZ2

j > t

0

@

1

A ¼ Pðv2
d > qÞq¼t=l, 

eq. (5) shows that

p̂EBA1 ¼ HðTNT; �k, . . . , �kÞ ¼ Pðv2
d > tÞt¼TSB

:

That is, the p-value for a single block is identical to the 
Satorra–Bentler p-value.

This argument can be applied to any number of blocks, 
giving p-values for EBA3, EBA4, and so forth (Foldnes and 
Grønneberg, 2017).

All the robustified tests require an estimate Ĉ of the 
asymptotic covariance matrix C. Browne (1974) discussed 
two estimators for C, which we refer to as ĈA and ĈU: The 
former is asymptotically consistent and is currently the 
default estimator used in software packages. The latter 
is unbiased in finite samples, and asymptotically equivalent 
to ĈA: It has recently attracted attention (Du and Bentler, 
2022) as a promising alternative to ĈA: In addition, the 
robustified tests require a candidate for TNT: In the present 
study we consider candidates TML and TRLS:

With two candidates for Ĉ and two candidates for TNT, 
there are four possible estimators for any quantity depend
ing on them. So every robustified procedure considered in 
the present study has four versions, and all of these are 
included in our Monte Carlo design. We use the following 
notation: the TNT version is indicated as a subscript, and we 
indicate the use of ĈU instead of ĈA by employing the 
superscript UG. For instance, for the SB procedure we have 
the versions SBML, SBRLS, SBUG

ML, and SBUG
RLS:

1.3. Asymptotically Exact Tests

We refer to test procedures whose Type I error control 
under correct model specification converges to the nominal 
level as asymptotically exact tests. The procedures SB, SS, 
and EBA are not in general asymptotically exact. In other 
words, the Type I error rate of, e.g., SB, will not necessarily 
approach the nominal rate of 5% even in large samples. In 
contrast, the three procedures next discussed are asymptot
ically exact.

By imposing mild assumptions on the employed estima
tor and the rank of D and C, Browne (1984) showed that 
the asymptotically distribution-free (ADF) test statistic

TADF ¼ nðs − r̂Þ
0

Ĉ
−1 − Ĉ

−1
D̂ðD̂

0
Ĉ

−1
D̂Þ

−1
D̂
0
Ĉ

−1
h i

ðs − r̂Þ

asymptotically follows a chi-square distribution with d 
degrees of freedom whenever Ĉ consistently estimates C. 
Unfortunately, many studies (e.g., Curran et al., 1996; 
Olsson et al., 2000) report that the ADF test requires very 
large sample sizes to perform satisfactorily, due to the sam
pling variance of the fourth-order moments involved in esti
mating C.

The second asymptotically exact test is the Bollen–Stine 
bootstrap (Beran and Srivastava, 1985; Bollen and Stine, 
1992). The procedure starts with linearly transforming the 
observed data so that the model fits the transformed data 
perfectly. Then, a p-value for the hypothesis of correct 
model specification is calculated by drawing bootstrap sam
ples from the transformed data set and fitting the model to 
obtain a sequence of normal theory TB

NT bootstrap values. 
The p-value is the proportion of the TB

NT values that exceed 
the original TNT value obtained in the original data sample. 
The number of bootstrap samples is typically at least 1000, 
so the bootstrap is a computationally intensive method. This 
likely explains the scarcity of Monte Carlo studies that 
evaluate the Bollen–Stine bootstrap. Also, most of these 
studies focus on small models with no more than 11 
observed variables (Fouladi, 1998; Ichikawa and Konishi, 
2001; Nevitt and Hancock, 2004; Foldnes and Grønneberg, 
2019). For larger models, to the best of our knowledge, 
Ferraz et al. (2022) is the only available study, including up 
to 30 observed variables. For small models with 10 observed 
variables, the results of Ferraz et al. (2022) were in line with 
previous studies in finding that the Bollen–Stine bootstrap 
adequately controlled Type I error rates. However, for larger 
models Ferraz et al. (2022) concluded that the empirical 
rejection rates were too low. For instance, with 30 observed 
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variables and the largest sample size included (n¼ 1000), 
the rejection rates were in the range 1.8%- 2.6% at the 5% 
level of significance. In our Monte Carlo study, we expand 
the number of observed variables to 40 and employ a larger 
set of non-normal data conditions than previously consid
ered, to gain further insight into the Bollen–Stine bootstrap.

The third asymptotically exact test uses the estimated 
eigenvalues of UC directly. Since this is equivalent to block- 
averaging eigenvalues with blocks of size one, so that ~kj ¼

k̂j for j ¼ 1, . . . , d, we may consider this an EBA type pro
cedure, with p-value given by

p̂EBAd ¼ HðTNT; k̂1, . . . , k̂dÞ

where H is defined in eq. (4). This procedure is identical to 
using d blocks (which are then singleton sets) in EBA, and 
we refer to it as EBAd. Since EBAd has not yet been studied 
in the literature, it is included in our Monte Carlo investiga
tions. The estimated eigenvalues will converge toward their 
population counterparts as the sample size increases, so 
EBAd is asymptotically exact. The sampling variability of 
estimated eigenvalues is, however, so large that impractical 
sample sizes may be required to obtain acceptable Type I 
error control. Figure 1 illustrates the final sample fluctua
tions in the estimated eigenvalues in a ten-dimensional two- 
factor model with non-normal data. The model has 34 
degrees of freedom, and hence 34 associated non-zero eigen
values. In the figure, the crosses represented the population 
values, i.e., the eigenvalues of UC, in increasing order, with 
a range 1:12--1:27: We simulated 200 samples of size 
n¼ 1500 and extracted in each sample the sorted eigenval
ues of Û Ĉ: For each rank i ¼ 1, . . . , 34, the corresponding 
estimated eigenvalues are represented by box plots. We 
make the following observations: (i) The estimates have 
high sampling variability, especially the largest eigenvalues. 
(ii) The higher eigenvalues are consistently overestimated, 
and the lower eigenvalues are consistently underestimated. 
(iii) Most of the box plots do not cover their corresponding 
population eigenvalue. These observations suggest that dir
ectly using the estimated eigenvalues to approximate the 
sampling distribution of TNT may not work well. While 
both the SB and the EBA procedures attempt to handle the 
sampling variability of eigenvalues by averaging sets of 
eigenvalues, earlier literature has not addressed the problem 
of under- and overestimation. The new approaches pro
posed below take the systematic bias into account and are 
designed to work well when the eigenvalues are related to 
the true eigenvalues in the same way as in Figure 1.

Before we turn to the new estimation methods, we 
explain why the pattern shown in Figure 1 is expected to 
occur also in conditions not covered by our Monte Carlo 
study.

1.4. Estimated Eigenvalues and the Empirical Spectral 
Function

The set of eigenvalues of a matrix are not ordered in and of 
themselves, although we can naturally sort the eigenvalues 

in increasing order. What are the statistical consequences of 
this ordering?

To build intuition, let us consider a highly simplified 
scenario where the eigenvalue estimates are independent 
and normal. We observe the set

S ¼ fX1, . . . , Xdg, d ¼ 34 

where X1, . . . , Xd are independent, X1, . . . , X25 � Nð2:5, 1Þ, 
and X26, . . . , X34 � Nð3:5, 1Þ: Although there is an order to 
the observations in our notation, we only observe the 
unordered set S, which plays the role of the estimated eigen
values. This emulates a situation where UC has 34 eigenval
ues, each equal to either 2.5 or 3.5.

If we plot the sorted eigenvalues Xð1Þ � Xð2Þ � � � �XðdÞ
against their rank ði=d, XðiÞÞ and connect these points via 
straight lines, the resulting curve is the empirical quantile 
function of the data. This curve will approximate the popu
lation quantile function. To see why, recall first that the 
empirical quantile function is a generalized inverse of the 
empirical distribution function

F̂ðxÞ ¼
1
d

Xd

i¼1
IfXi � xg (6) 

where IfAg is the indicator function of A, being 1 if A is 
true and zero otherwise. This empirical distribution function 
F̂ uniformly approximate �FðxÞ ¼ EF̂ðxÞ (Shorack and 
Wellner, 2009, Chapter 25). Under the assumed distribution 
for X1, . . . , X34, we get �FðxÞ ¼ 25

34 Uðx − 2:5Þ þ 9
34 Uðx − 3:5Þ:

The empirical quantile function will therefore approximate 
the inverse of �F , which we may denote by Q(p). Therefore, 
a plot of ði=d, XðiÞÞ will be close to ði=d, Qði=dÞÞ:

Figure 2 is based on a single realization of X1, . . . , X34:

The quantile function Q is plotted in red, the plot of 

Figure 1. Population and estimated eigenvalues for a ten-dimensional CFA 
with 34 degrees of freedom. The� represent population eigenvalues, while the 
boxplots represent estimated eigenvalues across 200 replications at sample size 
n¼ 1500.
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ði=p, XðiÞÞ in black, and the empirical quantile function in 
blue. The black curve is not visible as it is overwritten by 
the blue curve. Figure 2 displays shapes similar to the eigen
values plotted in Figure 3. There is systematic over- and 
underestimation of these values for i/d near zero or one, an 
effect that is due solely to sorting.

While the estimated eigenvalues ðk̂iÞ converge to ki, the 
variation in ðk̂iÞ will be considerable for realistic sample- 
sizes. A plot of ði=d, k̂iÞ will have the shape of an empirical 
quantile curve defined by the same formula as F̂ above (6), 
but with k̂i in place of Xi. Such objects are known as empir
ical spectral functions and play an important role in random 
matrix theory (Pastur and Shcherbina, 2011; Paul and Aue, 
2014). We conjecture that the empirical spectral function of 
Û Ĉ converges to a population function as d and n increases, 
so there is a limiting curve that plays a similar role as the 
red curve in Figure 2. With insights into this limit curve, a 
principled estimation procedure for approximating 
k1, . . . , kd could be developed in future work.

1.5. New Goodness-of-Fit Tests Based on Penalized 
Estimation

In this section, we introduce and motivate new procedures 
for obtaining p-values based on penalization of the esti
mated eigenvalues. Technical arguments are deferred to the 
online supplementary material.

Similar to the EBA procedures, the new tests takes the 
estimated eigenvalues k̂1, . . . , k̂d as input. From these val
ues, regularized estimates ~k1, . . . , ~kd are produced as next 
discussed, and these are used to calculate a p-value for the 
goodness of fit test using H in eq. (4):

HðTNT; ~k1, . . . , ~kdÞ:

For illustration, we continue with the eigenvalues associ
ated with the factor model discussed in Section 1.3 (Figure 1), 
which has 34 degrees of freedom. Here, however, we consider 
a single random sample of size n¼ 1500 and the correspond
ing set of estimated eigenvalues, using CA. These estimates 
and their corresponding population values are plotted in 
Figure 3. Also, the figure depicts four sets of approximated 
eigenvalues: First, the SB eigenvalues are plotted, all with the 

same value, namely the mean eigenvalue of 1.10. Second, the 
EBA2 approximations are depicted, with the 17 smallest 
eigenvalues set at the mean value 0.79 and the 17 largest 
eigenvalues at the mean value 1.41. The two remaining eigen
value sets in the figure, pEBA2 and pOLS, are obtained by a 
process explained in the next two subsections.

1.6. Penalized EBA

The EBA procedure may be modified naturally to counter
act the bias observed in Figures 1 and 3. Figure 3 also con
tains a new set of eigenvalues in the intermediate positions 
between SB and EBA2, which we call penalized EBA2 and 
denote by pEBA2. The connection to penalized estimation is 
explained in the online supplementary material. pEBA2 con
sists of a two-block set of weights ð~kjÞ equal to the average 
of the SB and the EBA2 weights. In Figure 3, the first block 
of weights contains the mean value of 1.10 and 0.79, which 

Figure 2. The sorted simulated data plotted against i/d for i ¼ 1, 2, . . . , d: the 
curve in red is the theoretical quantile function. The curve in blue is the empir
ical quantile function. The dotted black values are the levels of the 
observations.

Figure 3. Estimated eigenvalues and associated weights for EBA and regression 
procedures. EBA2¼ 2-block EBA, pEBA2¼ penalized 2-block EBA, pOLS¼
penalized regression, SB¼ Satorra–Bentler.
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is 0.95. Likewise, the second block has weights equal to the 
mean of 1.10 and 1.41, namely 1.26.

The procedure may be performed in the same manner for 
any number of blocks. That is, we average the EBA weights 
block by block with the overall average eigenvalue and thus 
obtain penalized versions pEBA3, pEBA4, and so forth.

The additional averaging employed in penalized EBA 
attempts to counteract the systematic bias observed in 
Figures 1 and 3. By anchoring the EBA eigenvalues closer to 
the global average, the overestimation for the larger eigen
value estimates is reduced, while still not restricting the 
eigenvalues to be constant. Similarly, the underestimation of 
the smaller eigenvalue estimates is also reduced.

1.7. Penalized OLS

The penalized OLS procedure can be motivated by a simple 
heuristic. Let ðkiÞ be the population eigenvalues and run a 
simple linear regression based on ði, kiÞ

d
i¼1 to obtain the 

OLS estimates b̂0 and b̂1: The ith eigenvalue – which is 
positive since UC is positive definite – can now be approxi
mated by ~ki ¼ maxðb0 þ b1i, 0Þ: This linear approximation 
inherits the systematic bias observed in Figures 1 and 3, 
causing the slope to be overestimated. A natural remedy to 
this sort of overestimation is to down-weight the regression 
slope using ridge regression, a well-known penalized form 
of OLS, which we refer to as pOLS.

The extent of down-weighting is represented by a param
eter c > 1 that is applied to the OLS slope parameter b1:

b1ðcÞ ¼
1
c

b1: (7) 

The corresponding ridge regression intercept is

b0ðcÞ ¼
�k − b1ðcÞ�id, �id :¼ d−1

Xd

i¼1
i ¼ ðd þ 1Þ=2: (8) 

The standard OLS estimates are recovered when c¼ 1. 
For c!1, we obtain b1 ¼ 0 and b0 ¼

�k, or the Satorra– 
Bentler weights. Simulations show that c¼ 2 works well, 
and we will use it in the remainder of the article. Figure 3
shows the predictions of pOLS.

1.8. RMSEA with Eigenvalue-Based Tests

The RMSEA is a popular measure of approximate fit origi
nating from the work of Steiger (1990). Using the Satorra– 
Bentler method, Li and Bentler (2006) found the formula

RMSEA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max 0, d−1 TNT −
Pd

i¼1ki

N − 1

� �� �s

:

Here ki are replaced by estimated values in practice. In 
the online supplementary material, it is shown the proposed 
penalized eigenvalue-based estimators have the same sum as 
the Satorra–Bentler estimate, and that the above formula for 
the RMSEA also holds for these procedures.

2. Monte Carlo Simulation

We considered a two-factor model x ¼ Kf þ e where x ¼
ðx1, . . . , xpÞ

0 is a p-dimensional vector of observed variables, 
f is a two-dimensional latent vector, and e is a p-dimen
sional vector of uncorrelated residuals, which is also uncor
related with f : The model had simple structure, with 
x1, . . . , xp=2 loading on the first factor and xp=2þ1, . . . , xp 
loading on the second factor. We included three model sizes 
with p ¼ 10, 20, and 40, and corresponding degrees of free
dom d ¼ 34, 169, and 739. This study was not preregistered. 
The model specifications are available at https://osf.io/ 
6trwu/, together with a database of eigenvalues for each 
replicated dataset in the present study. The eigenvalues are 
given for both the biased and the unbiased C estimators. 
The database also contains TML and TRLS and may be used 
for fast assessment of new variants of eigenvalue-based 
procedures.

2.1. Population Model

To represent a realistic scenario, we used heterogeneous fac
tor loadings with standardized loadings uniformly drawn in 
the range ½:3, :8�: Such loadings reflect values typically found 
in empirical studies (Li, 2016). The residual variances were 
then chosen to ensure that the observed variables had unit 
variance. The factor loadings were nested between models, 
e.g., for p¼ 20 the first five loadings for each factor were 
equal to the corresponding loadings in the p¼ 10 model. 
The interfactor correlations in all models were set to .5. For 
p¼ 10, the 45 correlations in the observed variables ranged 
from .08 to .56. For p¼ 20 the 190 correlations ranged from 
.08 to .64. The 780 correlations in the p¼ 40 model ranged 
from .045 to .64.

2.2. Data Distributions

For each population model, data were drawn from seven 
distributions. The distributions consisted of the normal dis
tribution and six non-normal distributions. Three of the 
non-normal distributions had moderate marginal skewness 
and kurtosis (Curran et al., 1996) taking values 3 and 7, and 
the other three had severe marginal skewness and kurtosis 
(with values 3 and 21). We crossed the two marginal non- 
normality levels with three data distributions: The independ
ent generator (IG) distribution (Foldnes and Olsson, 2016), 
the piece-wise linear (PL) distribution (Foldnes and 
Grønneberg, 2021), and the well-known Vale–Maurelli 
(VM) distribution (Vale and Maurelli, 1983). We use the 
notation VM1 and VM2 for the VM distributions with the 
moderate and severe levels of marginal skewness and kur
tosis, and similarly for the IG and PL distributions.

Including several classes of non-normal distributions was 
necessary for the external validity of the study, and was also 
required for investigating test performance while controlling 
for marginal skewness and kurtosis. However, note that 
even with the same skewness and kurtosis, the IG, PL, and 
VM distributions are different.
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2.3. Sample Size

We generated data at sample sizes n ¼ 400, 800, 1500, and 
3000, to reflect a range of sample sizes routinely used in 
empirical investigations.

2.4. Goodness-of-Fit Tests

All test statistics were calculated from normal-theory ML 
estimates. For the robustified tests and EBAd we considered 
four candidates, obtained by combining base statistic (TML 
or TRLS) and estimator of the asymptotic covariance matrix 
(ĈA or ĈU).

A total of 43 test statistics were evaluated, including the 
base statistics TML or TRLS: For the robustified tests we 
included the traditional tests TSB and TSS (a total of 8 candi
dates), the EBA procedures EBA2, EBA4, and EBA6 (12 
candidates), the penalized EBA procedures pEBA2, pEBA4, 
and pEBA6 (12 candidates), and the pOLS test (4 candi
dates). Among the asymptotically exact tests, we included 
the Bollen–Stine bootstrap based on TML, and the EBA pro
cedure with singleton blocks, EBAd (4 candidates).

2.5. Data Generation and Analysis

Crossing model size, distribution, and sample size resulted 
in 84 (3 � 7 � 4Þ simulation conditions. We generated 3000 
datasets for each condition. All tests except Bollen–Stine 
were evaluated in each condition based on 3000 replications. 
The computationally expensive Bollen–Stine test was com
puted only for n¼ 800 and n¼ 3000, and in the largest 
dimension (p¼ 40) the number of bootstrap replications 
was reduced to 1000.

All models were estimated using the maximum likelihood 
estimator in lavaan (Rosseel, 2012). The package covsim 
(Grønneberg et al., 2022) was used to simulate from the IG 
and PL distributions and the package lavaan was used to 
simulate VM distributions. The goodness-of-fit p-values were 
calculated using the newly developed package semTests. The 
package CompQuadForm (Duchesne and De Micheaux, 
2010) computed the p-values of the type given in Eq. (3).

2.6. Evaluation Criteria

We employed three evaluation criteria based on the 
observed percentage rejection rates (RR), obtained in each 
of the 84 conditions as the percentage of p-values below .05. 
Hence, we adopted the commonly used significance value 
of a ¼ 5%:

Our first criterion is the root-mean-square error (RMSE), 
which is a measure of the discrepancy between the observed 
rejection rate RR and the nominal 5% rejection rate: 

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

c ðRRc − 5Þ2=C
q

, where C denotes the number 
of conditions we are interested in. For instance, if we look 
at the smallest model size, and we include all distributions 
and sample sizes, C ¼ 7 � 4 ¼ 28: Our second criterion, 
the mean absolute deviation (MAD), is also a measure of 

the difference between the empirical rejection rates and the 
nominal rejection rate, defined as MAD ¼

P
cðjRRc − 5jÞ=C:

Our third criterion yields the percentage of acceptable 
rejection rates (ARR), defined as the proportion of condi
tions c for which 2:5% < RRc < 7:5%, (Bradley, 1978).

Given the large number of test candidates under evalu
ation, in addition to reporting these three criteria, we also 
sort the tests according to their RMSE performance in many 
of our result tables. We acknowledge that the sorting shifts 
the order of test statistics between tables, making it more 
difficult to compare the performance of a given test candi
date across conditions. However, the sorting greatly facili
tates the identification of the best-performing tests by 
inspecting the upper part of the result tables.

3. Results

3.1. ML, RLS and Robustified Tests

We evaluated two tests based on normality, either with ML 
and RLS, and 38 robustified tests.

3.1.1. Normal data
Type I error rates in the 12 conditions with normal data are 
presented in Table 1. For each model size, we have sorted 
the test statistics according to increasing RMSE values across 
the four sample sizes. At the smallest model size, p¼ 10, the 
normal-theory statistics TML and TRLS performed well, as 
expected. All 40 test candidates had acceptable rejection 
rates, ARR ¼ 1, at all sample sizes. The MAD ranged from 
0.3% for ML to 0.733% for EBA4UG

RLS:

With increasing model size, test performance generally 
deteriorated, as expected. Especially striking was the poor 
performance of ML in comparison to RLS. For instance, for 
p¼ 20 and p¼ 40 the MAD of ML was 1.18% and 5.85%, 
respectively. In comparison, the MAD of RLS was negligible 
for p¼ 20 and p¼ 40: 0.29% and 0.51%, respectively. Also, 
for dimensions p¼ 20 and p¼ 40 the robustified test SBUG

RLS 
was a top performer. Indeed, this test was the overall winner 
in terms of RMSE when collapsed over all 12 conditions, 
with RLS as the runner-up.

3.1.2. Non-Normal Data
Type I error rates for all tests in the 12 conditions (3 models, 
4 sample sizes) are tabulated for each non-normal distribu
tion in the supplementary material, see Tables B2–B7. In 
Table 2 we report aggregated results over the six non-normal 
distributions. Test performance was calculated for each model 
size, across six distributions and four sample sizes, and test 
candidates were ranked according to increasing RMSE.

Under non-normality, the normal-theory statistics ML 
and RLS performed poorly. In fact, in none of the 72 non- 
normal conditions did these tests achieve an acceptable 
rejection rate.

Expectedly, the normal-theory tests were outperformed by 
the traditional robustified tests, SB and SS. Generally, SB out
performed SS, and the SB candidate with the consistently 
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best performance was SBUG
RLS: The standard SB test, which is 

based on ML and ĈA, performed remarkably worse than 
SBUG

RLS, which is based on RLS and ĈU: For instance, collapsing 
over all 72 non-normal conditions, the MAD of SB and SBUG

RLS 
was 3.28% and 1.63%, respectively. Also, the ARR of SB was 
65.3%, compared to 76.4% for SBUG

RLS: Among the SS candidates, 
performance was best when based on ML and ĈA: However, 
even for this candidate, SS, had overall poor performance, espe
cially in the large model, where ARR was zero.

Many candidates in the family of newly developed proce
dures (EBA, pEBA, and pOLS) outperformed the SB and SS 
procedures. The RMSE rank in Table 2 of the best trad
itional robustified test, SBUG

RLS, was 17, 20, and 18 for dimen
sions 10, 20 and 40, respectively. To further give an 
overview of the best-performing tests, we aggregated also 
over model size, with the resulting ten best performers (in 
terms of RMSE) presented in Table 3. This table hence is 
based on collapsing 72 conditions (six distributions, four 
sample sizes, and 3 model sizes). The top nine performers 
in Table 3 all belong to the new class of penalized 

eigenvalue modeling. Also noteworthy, eight of the ten tests 
are based on RLS, and only two on ML.

To investigate in full detail the performance of some of 
the best tests in Table 3, we picked the top candidate from 
the pEBA2, pEBA4, pEBA6, and pOLS families, namely 
EBA2UG

RLS, pEBA4RLS, pEBA6RLS, and pOLSRLS: The rejec
tion rates in all 72 conditions of these four candidates are 
plotted in Figure 4. The figure also includes the best candi
date in each of the traditional families of robustified tests: 
SBUG

RLS for SB, and SS for SS. A consistent pattern is that the 
newly developed tests were associated with rejection rates 
intermediate between SS, which severely under-rejected, and 
SBUG

RLS, which tended to over-reject. The figure demonstrates 
that goodness-of-fit testing was more challenging in larger 
models, while larger sample sizes are associated with better 
Type I error control. Also, the distributional type affected 
the test procedures. Under normality (see also Table 1), all 
tests performed well, except SS in the largest model. Under 
non-normality, we see that performance depended on mar
ginal kurtosis, as expected, with overall MAD (across tests, 

Table 1. Type I Error rates, normal data.

p¼ 10 p¼ 20 p¼ 40

n n n

Test 400 800 1500 3000 Test 400 800 1500 3000 Test 400 800 1500 3000

ML 4.8 5.7 4.8 5.2 RLS 5.4 4.9 5.4 4.7 SBUG
RLS

4.8 4.5 4.8 4.5
SB 4.7 5.8 4.8 5.2 SBUG

RLS
4.8 4.7 5.4 4.6 RLS 6.2 5.3 5.0 4.5

RLS 4.4 5.6 4.6 4.9 pEBA2RLS 4.8 4.7 5.4 4.6 pEBA2RLS 4.5 4.0 4.5 4.3
SBUG 4.4 5.7 4.8 5.1 SBRLS 5.6 5.1 5.5 4.7 SBRLS 6.8 5.5 5.2 4.6
pEBA2 4.4 5.7 4.8 5.2 pOLSRLS 4.5 4.5 5.3 4.5 pEBA2UG 5.4 3.7 4.2 3.8
pEBA4 4.4 5.7 4.8 5.2 pEBA4RLS 4.5 4.5 5.4 4.5 pOLSRLS 3.4 3.3 4.2 4.0
pEBA6 4.4 5.7 4.8 5.2 pEBA6RLS 4.4 4.5 5.3 4.5 pEBA4RLS 3.3 3.3 4.3 4.0
pOLS 4.4 5.7 4.8 5.2 EBA2 5.0 4.1 5.3 4.6 pEBA2UG

RLS 3.3 3.2 4.2 4.0
pEBA4UG 4.2 5.6 4.7 5.1 pEBA4UG 5.9 4.7 5.6 4.8 EBA2 7.5 4.4 4.4 4.0
pEBA6UG 4.2 5.6 4.7 5.1 pEBA6UG 5.9 4.7 5.6 4.8 pEBA6RLS 3.1 3.2 4.2 4.0
pOLSUG 4.2 5.6 4.7 5.1 pOLSUG 5.9 4.7 5.6 4.8 EBA4 3.1 2.5 3.6 3.6
pEBA2UG 4.2 5.6 4.7 5.1 pEBA2UG

RLS
4.1 4.3 5.3 4.5 pOLSUG

RLS
2.5 2.7 3.7 3.7

SBRLS 4.4 5.9 4.6 5.1 pEBA2UG 6.1 5.0 5.7 4.8 pEBA4UG
RLS 2.4 2.6 3.8 3.7

EBA2 4.1 5.4 4.5 5.1 pEBA2UG 4.2 3.8 5.2 4.5 pEBA6UG
RLS

2.1 2.4 3.7 3.7
pEBA2RLS 4.1 5.7 4.6 5.0 pEBA4UG

RLS 3.8 4.1 5.2 4.5 EBA6 2.4 2.3 3.3 3.5
pEBA4RLS 4.1 5.7 4.6 4.9 pOLSUG

RLS
3.8 4.0 5.2 4.4 EBA4UG 2.2 2.2 3.2 3.4

pEBA6RLS 4.0 5.7 4.6 4.9 pEBA6UG
RLS 3.8 4.0 5.2 4.4 SS 2.0 2.2 3.3 3.5

SBUG
RLS

4.0 5.7 4.6 4.9 pEBA6 6.6 5.3 5.7 4.8 pEBA6UG 9.6 6.4 5.3 4.7
pOLSRLS 4.0 5.7 4.6 4.9 EBA4 4.0 3.6 5.2 4.5 EBA6UG 1.8 2.1 3.0 3.2
pEBA2UG

RLS
3.8 5.5 4.6 4.9 pOLS 6.7 5.3 5.7 4.8 SSUG 1.5 2.0 2.8 3.2

EBA4 3.8 5.4 4.4 5.0 pEBA4 6.7 5.3 5.8 4.8 EBA2RLS 1.4 1.6 2.8 3.1
SS 3.8 5.4 4.4 5.0 SS 3.8 3.6 5.2 4.5 pEBA4UG 10.4 6.8 5.5 4.7
pEBA2UG 3.8 5.4 4.3 5.0 EBA6 3.8 3.5 5.1 4.5 pOLSUG 10.9 6.9 5.5 4.7
EBA6 3.8 5.4 4.3 5.0 EBA4UG 3.6 3.3 5.0 4.4 EBA2UG

RLS
1.0 1.3 2.6 3.0

pEBA4UG
RLS 3.7 5.5 4.5 4.8 pEBA2 7.1 5.4 5.8 4.9 EBA4RLS 0.4 1.1 2.3 2.9

pEBA6UG
RLS 3.7 5.5 4.5 4.8 SBUG 7.2 5.4 5.8 4.9 EBA6RLS 0.3 0.9 2.2 2.9

pOLSUG
RLS

3.7 5.5 4.5 4.8 SSUG 3.5 3.3 5.0 4.4 SSRLS 0.2 0.8 2.2 2.9
EBA2RLS 3.6 5.4 4.5 4.8 EBA6UG 3.5 3.3 5.0 4.4 EBA4UG

RLS 0.2 0.8 2.1 2.8
SSUG 3.6 5.3 4.3 4.9 EBA2RLS 3.2 3.3 4.9 4.3 EBA6UG

RLS 0.2 0.7 1.9 2.7
EBA4RLS 3.5 5.3 4.5 4.7 EBA2UG

RLS 2.8 3.1 4.7 4.2 SSUG
RLS

0.2 0.7 1.9 2.7
SSRLS 3.5 5.3 4.5 4.7 ML 7.8 5.9 6.0 5.0 pEBA6 12.4 7.6 5.9 4.8
EBA4UG 3.6 5.3 4.3 4.9 EBA4RLS 2.4 3.0 4.7 4.2 pEBA2UG 13.0 7.6 5.8 4.8
EBA2UG

RLS 3.5 5.3 4.4 4.7 SB 8.0 6.0 6.1 5.0 pEBA4 13.2 7.8 6.0 4.8
EBA6RLS 3.5 5.3 4.4 4.7 SSRLS 2.3 3.0 4.7 4.2 pOLS 14.0 7.8 5.9 4.8
EBA6UG 3.5 5.3 4.3 4.9 EBA6RLS 2.3 3.0 4.7 4.1 pEBA2 16.4 8.7 6.4 4.8
SSUG

RLS
3.3 5.2 4.3 4.7 EBA4UG

RLS 2.0 2.8 4.4 4.1 SBUG 17.5 9.8 7.0 5.1
EBA4UG

RLS 3.3 5.1 4.3 4.6 SSUG
RLS

1.8 2.8 4.4 4.1 ML 20.2 10.5 7.4 5.3

EBA6UG
RLS

3.3 5.1 4.3 4.6 EBA6UG
RLS

1.8 2.8 4.4 4.1 SB 21.6 11.1 7.4 5.3

Within each dimension, the tests are sorted according to increasing RMSE.
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distributions, and model sizes) equal to 1.11% for the skew
ness ¼ 2, kurtosis ¼ 7 condition (IG1, PL1, VM1) and 
1.88% for the skewness ¼ 7, kurtosis ¼ 21 condition (IG2, 
PL2, VM2). Also, there was some variation in overall test 
performance among the underlying distributional class. The 
overall MAD for distributions of type IG, PL, and VM was 
1.56%, 1.50%, and 1.43%, respectively.

3.2. Asymptotically Exact Tests

Table 4 presents the Bollen–Stine rejection rates. The under
lying distribution strongly affected test performance, with 
severe overrejection for PL2 and partly for VM2. In the 
large model, for PL2 and VM2, the rejection rate was virtu
ally 100%, in striking contrast to the finding in Ferraz et al. 
(2022) that the Bollen–Stine test tended to underreject in a 
p¼ 30 model. In contrast, under the normal and IG distri
butions, Bollen–Stine consistently underrejected, reflecting 
the findings in Ferraz et al. (2022). Overall, echoing the 
findings of Ferraz et al. (2022), as model size increased, 
Bollen–Stine performed poorly, even for n¼ 3000.

Next, consider the asymptotically exact test EBAd. The 
differences between the four EBAd candidates were small 
(see Figure B1 in the supplementary material). Therefore, in 
Table 5 we only report results for the default version, which 
is based on ML and ĈA: The results are aggregated over all 
7 distributions. The test exhibited poor Type I error control, 
especially at low sample sizes, with severe underrejection. 
The asymptotic superiority of EBAd was not yet detectable 

Table 2. Test performance across 6 non-normal distributions and 4 sample sizes, ranked in increasing RMSE order.

p¼ 10 p¼ 20 p¼ 40

Test RMSE MAD ARR Test RMSE MAD ARR Test RMSE MAD ARR

pOLSUG 0.63 0.54 100.0 pOLSRLS 1.25 0.93 87.5 pEBA4RLS 1.44 1.31 95.8
pOLSRLS 0.64 0.53 100.0 pEBA4RLS 1.25 0.96 91.7 pEBA4UG

RLS 1.66 1.46 83.3
pOLS 0.64 0.55 100.0 pOLSUG

RLS
1.30 1.06 91.7 pOLSRLS 1.71 1.52 87.5

pEBA2UG
RLS 0.65 0.54 100.0 pEBA6RLS 1.30 1.11 95.8 pEBA6RLS 1.76 1.55 87.5

pEBA6 0.65 0.56 100.0 pEBA4UG
RLS 1.30 1.08 91.7 pEBA2UG

RLS 1.80 1.29 83.3
pEBA4UG 0.65 0.56 100.0 pEBA6UG

RLS 1.45 1.25 95.8 pOLSUG
RLS

2.14 1.94 70.8
pEBA4RLS 0.66 0.54 100.0 pEBA2UG

RLS
1.46 1.02 87.5 pEBA6UG

RLS
2.16 2.00 70.8

pEBA4 0.66 0.57 100.0 pEBA4UG 1.61 1.31 87.5 EBA2RLS 2.34 2.13 41.7
pEBA2RLS 0.67 0.57 100.0 pOLSUG 1.63 1.30 87.5 pEBA6UG 2.58 2.17 54.2
pEBA2UG 0.68 0.58 100.0 pEBA6UG 1.64 1.42 83.3 EBA2UG

RLS
2.62 2.41 37.5

pEBA6RLS 0.69 0.57 100.0 pEBA6 1.66 1.36 87.5 pOLSUG 2.62 2.20 54.2
pEBA6UG 0.70 0.57 100.0 pEBA2RLS 1.72 1.14 79.2 pEBA2UG 2.63 2.37 45.8
pOLSUG

RLS
0.72 0.60 100.0 pEBA4 1.77 1.27 87.5 EBA2 2.76 2.32 62.5

pEBA4UG
RLS 0.73 0.61 100.0 pOLS 1.78 1.25 83.3 pEBA4UG 2.76 2.14 62.5

pEBA6UG
RLS

0.79 0.67 100.0 EBA2RLS 1.81 1.68 91.7 pEBA2RLS 2.77 1.70 75.0
pEBA2 0.80 0.66 100.0 EBA2 1.81 1.64 87.5 pEBA6 2.95 2.32 58.3
SBUG

RLS
0.89 0.72 100.0 pEBA2UG 1.97 1.27 83.3 pOLS 3.04 2.33 54.2

SBRLS 1.05 0.87 100.0 pEBA2UG 1.97 1.80 87.5 SBUG
RLS

3.33 2.49 58.3

SBUG 1.07 0.86 100.0 EBA2UG
RLS

2.02 1.85 75.0 pEBA4 3.55 2.44 58.3
EBA2 1.17 0.93 100.0 SBUG

RLS
2.30 1.70 70.8 EBA4 3.75 3.56 20.8

SB 1.30 1.06 100.0 pEBA2 2.31 1.58 75.0 EBA4UG 3.92 3.76 16.7
EBA2RLS 1.31 1.06 95.8 SBRLS 2.84 2.20 62.5 EBA4RLS 4.02 3.94 8.3
pEBA2UG 1.33 1.08 95.8 SBUG 2.92 2.16 66.7 EBA4UG

RLS 4.14 4.07 4.2
EBA2UG

RLS 1.47 1.21 95.8 EBA4 2.96 2.71 41.7 EBA6 4.16 4.05 12.5
EBA4 1.93 1.69 75.0 EBA4RLS 3.08 2.88 37.5 EBA6UG 4.26 4.17 4.2
EBA4RLS 1.98 1.75 75.0 EBA4UG 3.09 2.85 37.5 pEBA2UG 4.27 2.78 66.7
EBA4UG 2.06 1.82 75.0 EBA4UG

RLS 3.21 3.01 25.0 EBA6RLS 4.35 4.29 4.2
EBA4UG

RLS 2.10 1.88 66.7 EBA6 3.30 3.05 37.5 EBA6UG
RLS 4.42 4.37 4.2

EBA6 2.22 1.97 70.8 EBA6UG 3.42 3.18 29.2 SS 4.62 4.59 0.0
EBA6RLS 2.25 2.02 66.7 EBA6RLS 3.43 3.23 25.0 SSUG 4.65 4.62 0.0
SS 2.29 2.03 70.8 SB 3.50 2.69 54.2 SSRLS 4.72 4.70 0.0
EBA6UG 2.33 2.09 66.7 EBA6UG

RLS 3.54 3.33 25.0 SSUG
RLS

4.74 4.72 0.0

EBA6UG
RLS 2.34 2.11 66.7 SS 3.78 3.61 20.8 SBRLS 4.76 3.66 45.8

SSRLS 2.37 2.13 66.7 SSUG 3.85 3.69 20.8 pEBA2 5.82 3.79 58.3
SSUG 2.41 2.16 66.7 SSRLS 3.88 3.74 20.8 SBUG 6.48 4.53 45.8
SSUG

RLS
2.45 2.21 62.5 SSUG

RLS
3.95 3.81 16.7 SB 8.50 6.08 41.7

RLS 48.84 39.58 0.0 RLS 76.73 69.55 0.0 RLS 79.48 72.15 0.0
ML 49.24 40.10 0.0 ML 77.26 70.48 0.0 ML 80.85 75.33 0.0

RMSE: root mean square error in percentage; MAD: mean absolute deviation of rejection rates from 5%; ARR: percentage of acceptable rejection rates.

Table 3. Top ten robustified tests according to RMSE when aggregating 6 
non-normal distributions, 4 sample sizes and 3 model sizes.

Test RMSE MAD ARR

pEBA4RLS 1.16 0.94 95.8
pOLSRLS 1.28 0.99 91.7
pEBA4UG

RLS 1.29 1.05 91.7
pEBA6RLS 1.32 1.07 94.4
pEBA2UG

RLS 1.39 0.95 90.3

pOLSUG
RLS

1.50 1.20 87.5

pEBA6UG
RLS

1.57 1.31 88.9
pEBA6UG 1.81 1.39 79.2
pOLSUG 1.82 1.35 80.6
EBA2RLS 1.86 1.62 76.4

RMSE: root mean square error in percentage; MAD: mean absolute deviation 
of rejection rates from 5%; ARR: percentage of acceptable rejection rates.
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at sample size n¼ 3000. To further inspect the rate of con
verge to nominal 5% rejection rates, and to confirm asymp
totic consistency, we simulated some very large sample size 
conditions (n ¼ 104, 105). Even at n ¼ 104 the tendency to 
underreject was still pronounced for dimensions p¼ 20 and 
p¼ 40. For instance, for p¼ 40 and n ¼ 104 the overall 
rejection rate across distributions was only 2.6%.

4. Illustration of the Package semTests

We demonstrate the use of the newly developed R package 
semTests (Moss, 2024) by conducting a small power study. 
Consider the model with p¼ 20 observed variables used in 
our Monte Carlo study (see supplementary online material 
for the complete model specification). We first simulate a 

Figure 4. Rejection rates in % for six selected tests. Panel columns and rows correspond to model size and distribution, respectively.
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n¼ 800 non-normal data set from this model using the 
VM2 distribution. Then we run the pvalues() function from 
semTests on the fitted model, using the default parameter 
values. The default p-values reported were chosen from the 
best-performing tests in our Monte Carlo study, in addition 
to the best-performing traditional test SBUG

RLS:

The reported p-values are similar, with SBUG
RLS having the 

smallest p-value.
Next, we conduct a small power study with 1000 replica

tions where n¼ 800 and data is drawn from a VM2 distri
bution. Model misspecification is obtained by adding a 
cross-loading with standardized factor loading of 0.4.

The rejection rates are ordered in the same way as 
observed for the Type I errors in Figure 4 (see bottom mid
dle panel at n¼ 800). Highest power is achieved by SBUG

RLS, 
which also had the highest rejection rate, 7.1%, among the 
tests in Figure 4. Hence, in terms of power, SBUG

RLS outper
formed the other test candidates. However, Type I error 
control is a more fundamental requirement than adequate 
power, and the other test candidates outperform SBUG

RLS in 
terms of Type I error control.

5. Discussion

We have proposed and evaluated new goodness-of-fit meth
ods for factor analysis and structural equation modeling 
with non-normal data. The new methods pEBA and pOLS 
apply penalization on the estimated eigenvalues of UC: The 
pEBA methods were derived from the EBA approach 
(Foldnes and Grønneberg, 2017) and the pOLS methods are 
based on a linear approximation of the sorted eigenvalues, 
where the penalization is obtained by dampening the slope. 
We have provided a formal analysis of eigenvalue modeling 
that motivates pEBA and pOLS.

In the past, many tests have been proposed to handle 
goodness-of-fit testing under non-normality, and we con
ducted a large Monte Carlo study to compare the Type I 
error control of the new methods with well-known trad
itional tests such as the Satorra–Bentler scaled test, the 
scaled and shifted test, and the Bollen–Stine bootstrap test. 
Moreover, we took recent developments into account by 
acknowledging that the little-known normal-theory RLS test 
(Browne, 1974) might outperform the classical normal-the
ory ML test in multivariate normal conditions, and that 
replacing the traditionally used asymptotically unbiased C 

estimator ĈA by an unbiased estimator ĈU might improve 
test performance. Therefore, the Monte Carlo study eval
uated four versions (ML/RLS, ĈU/ĈA) of each test statistic.

5.1. Practical Recommendations

For the special case of normal data, our results echoed ear
lier findings (e.g., Hayakawa, 2019) in demonstrating that 
the RLS test is far superior to the more commonly used ML 
test. Therefore, we advise using TRLS instead of TML when 
reporting goodness-of-fit in normal data conditions.

For non-normal data, our recommendations are as fol
lows. Echoing Ferraz et al., 2022, we do not recommend 
using the Bollen–Stine bootstrap test. This test is computa
tionally heavy and was found to adequately control Type I 
error only in the smallest model with 10 observed variables, 
and then only for five of the six non-normal conditions. In 
a model with 40 observed variables, we found the bootstrap 
test to perform poorly even with a sample size of 3000.

For the Satorra–Bentler test, we demonstrated an 
improved Type I error control by applying the scaling to 
the RLS test statistic instead of the commonly used ML stat
istic. Furthermore, performance is improved by replacing 
ĈA by ĈU when calculating the scaling factor. As in 
previous studies (e.g., Foldnes and Olsson, 2015), the scaled- 

Table 4. Rejection rate in % for the bollen–stine bootstrap.

n Distribution p¼ 10 p¼ 20 p¼ 40

800 Normal 4.0 2.5 1.1
IG1 4.7 3.4 1.1
IG2 5.6 5.0 1.4
PL1 4.3 5.8 69.1
PL2 10.2 93.1 100.0
VM1 4.7 3.8 12.2
VM2 6.6 55.2 99.9

3000 Normal 4.5 4.3 2.4
IG1 4.7 3.8 2.0
IG2 4.5 5.1 3.4
PL1 3.7 4.6 64.1
PL2 10.7 95.5 100.0
VM1 4.7 4.5 7.6
VM2 5.4 56.8 100.0

Table 5. Rejection rate in % for the EBAd test procedure, aggregated over all 
seven distributions.

n

400 800 1500 3000 104 105

p¼ 10 2.0 2.9 3.0 4.0 4.8 4.9
p¼ 20 0.8 1.1 1.9 2.6 3.8 4.7
p¼ 40 0.3 0.4 0.8 1.2 2.6 4.8

m2_misspecified_pop <- paste(m2, “; F1¼�start
,! (0.4)�x11”)

simres <- sapply(1:1000, n(i){

set.seed(i)

X <- simulateData(m2_misspecified_pop,
,! sample.nobs ¼ 800, skewness ¼ 3, kurtosis

,! ¼21)

f <- cfa(m2, data¼X)

pvalues(f)})
rowMeans(simres < .05)

#sb_ug_rls peba2_ug_rls peba4_rls peba6_rls
,! pols2_rls

# 0.705 0.666 0.624 0.598 0.631 

library(semTests); library(lavaan)
set.seed(1234)

X <- simulateData(m2, sample.nobs ¼ 800,

,! skewness ¼ 3, kurtosis ¼ 21)

f <- cfa(m2, data¼X)
pvals <- pvalues(f)

round(pvals,3)

#sb_ug_rls peba2_ug_rls peba4_rls peba6_rls
,! pols2_rls

# 0.106 0.125 0.139 0.152 0.144 
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and-shifted test was found to perform poorly with severe 
under-rejection in most conditions, and we discourage its 
use unless the sample size is very large.

Overall, the nine best-performing tests in our Monte 
Carlo study all were of pEBA or pOLS type. Based on Table 
3, we recommend basing goodness-of-fit in non-normal 
conditions on pEBA4RLS or pOLSRLS:

5.2. Limitations and Future Research

We have focused exclusively on continuous data. However, 
the methods we propose are naturally applicable to ordinal 
data analyzed using polychoric correlations. It is natural to 
ask whether pEBA and pOLS outperform the currently 
available methods in the testing of ordinal factor models, 
such as the SS test used by lavaan (Rosseel, 2012).

The idea of eigenvalue penalization has not been fully 
explored yet, and different variants could potentially result 
in better test performance. A more thorough analysis of 
eigenvalue modeling could shed more light on the subject. 
Using uneven block sizes in the pEBA is another possibility. 
Future estimation of the eigenvalues could also be based on 
the limiting behavior of the spectral distribution of Û Ĉ:

A natural extension of the present paper is to consider 
power. That is, among tests that control Type I error, which 
candidate best detects model misspecification? We consider 
this as a topic for a future Monte Carlo study. The results 
of such a study must involve balancing the primary concern 
of Type I error control with the secondary concern of 
power.

Our Monte Carlo design is limited in several ways. We 
only considered factor analysis models, not more general 
structural equation models. Moreover, the number of 
observed variables ranged from 10 to 40, but models with 
hundreds of observed variables are not uncommon in 
applied research. A study of about 50–100 variables would 
shed more light on such situations. We modeled three types 
of non-normal distributions, across two conditions of mar
ginal non-normality as measured in terms of marginal skew
ness and kurtosis. But other kinds of non-normality is 
certainly encountered in practice, and further research could 
be conducted by employing more flexible non-normal distri
butional classes such as the flexible VITA method suggested 
by Grønneberg and Foldnes, 2017 and implemented in the 
R package covsim (Grønneberg et al., 2022). Finally, we 
considered model fit only for non-nested models. Nested 
model testing is widely conducted in measurement invari
ance testing, and the new test procedures can naturally be 
applied also in these situations.

6. Conclusion

We have proposed several new methods for evaluating 
model fit of structural equation models and evaluated their 
performance in a Monte Carlo study of factor models. The 
new methods outperform existing methods such as Satorra– 
Bentler in terms of Type I error control. The overall best- 
performing test, pEBA4RLS, performed adequately in 69 of 

72 non-normal conditions. The new methods are available 
in the R package semTests.
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