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ABSTRACT

We propose new ways of robustifying goodness-of-fit tests for structural equation modeling under
non-normality. These test statistics have limit distributions characterized by eigenvalues whose esti-
mates are highly unstable and biased in known directions. To take this into account, we design
model-based trend predictions to approximate the population eigenvalues. We evaluate the new pro-
cedures in a large-scale simulation study with three confirmatory factor models of varying size (10, 20,
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or 40 manifest variables) and six non-normal data conditions. The eigenvalues in each simulated data-
set are available in a database. Some of the new procedures markedly outperform presently available
methods. We demonstrate how the new tests are calculated with a new R package and provide prac-

tical recommendations.

Goodness-of-fit testing is central when assessing whether a
proposed measurement instrument can be used to under-
stand latent psychological traits and processes. Researchers
often evaluate their instruments using factor modeling
where the trait is considered a latent variable that dictates
the correlational structure among items. Model fit statistics
and indices are then calculated, from which the researcher
can assess whether the model is well specified. Only in a
well-specified model can parameters such as factor loadings
and correlations be properly interpreted to gain insight into
the workings of a proposed instrument and the associations
between latent traits.

In this article, we propose and study new classes of good-
ness-of-fit tests for structural equation models (SEMs) and
confirmatory factor models under non-normality. As the
sample size increases, commonly used test statistics have
distributions that converge to distributions that are charac-
terized by the eigenvalues of a certain matrix. Once these
eigenvalues are estimated, p-values for the goodness of fit
test can in principle be directly calculated. Unfortunately, as
illustrated in a later section, empirical estimates of the
eigenvalues are highly unstable and biased. We present an
estimation theory for the eigenvalues and propose to stabil-
ize and bias-correct the estimated eigenvalues using model-
based trend predictions. This theory is based on population
eigenvalues but allows for penalized estimation procedures
where the penalization function can be chosen. Two classes
of prediction models are investigated, where the trend for
the eigenvalues may be piece-wise constant or linear. We
design penalization functions for these classes that take into
account the known systematic bias of eigenvalue estimates.

We start our article with a review goodness-of-fit testing
in SEM, including traditional and new procedures, under
both normal and non-normal data. Then we present our
new tests based on penalized estimation using an illustrative
example. Next, we present a large-scale Monte Carlo study
to evaluate the procedures in a variety of conditions with
varying sample sizes, model sizes, and data distributions.
This is followed by a section that summarizes the results of
the Monte Carlo simulations. Afterward, we demonstrate
how to perform the tests using the new R (R Core Team,
2023) package semTests (Moss, 2024). We end with a dis-
cussion of our findings, where we also outline limitations
and future research ideas.

The online supplementary material contains an analytical
framework for the new tests, software snippets, mathemat-
ical deductions, and further simulation results.

1. Goodness-of-Fit Tests in Covariance Structure
Analysis

Factor and structural equation models imply structural con-
straints X = X(0) on the covariance matrix X of the
observed variables X = (X, ...,X,). Model parameters are
contained in the g-dimensional vector 0 and are estimated
by minimizing a discrepancy function that measures the dis-
tance between the observed covariance matrix S from n
observations and the model-implied covariance matrix X(6).

For instance, in confirmatory factor analysis, the model
is specitied by the equations x = Af +€ where x=
(x1, ...,x,) is a p-dimensional vector of observed variables,
f is a latent vector, and € is a p-dimensional vector of
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residuals, which are uncorrelated with f (Bollen, 1989). The
elements in A, some of which are constrained to zero, are
referred to as factor loadings. Additional constraints regard-
ing the elements of A, ® and ¥, are needed for model iden-
tification, where ® and ¥ are the covariance matrices of the
latent and residual variables, respectively. The model implies
the following covariance structure among the observed vari-
ables: £(0) = A®A’ + W, where 0 contains all the estimated
parameters in A, ®, and .

The most popular estimation method is normal-theory
maximum likelihood (NTML), where the discrepancy func-
tion is (Bollen, 1989)

Frue (8, 2(8)) = In[2(0)] = In|S| - tr(SZ(6) ™) —p.

The corresponding estimator Onpyy is the minimizer of
Fxtvmr over 0. We remark that this estimator is consistent
even under non-normal data.

1.1. Tests for Normal Data

Most tests for correct model specification in SEM are based
on some model fit test statistic Ty, often referred to as a 7>
statistic, whose sampling distribution can be approximated by
a chi-square distribution when data are multivariate normally
distributed and the model specification is correct. Popular
model fit indices such as RMSEA (Steiger et al, 1985) and
CFI (Bentler, 1990) also depend on a Tyt that is approxi-
mately chi-square distributed under normality.

The most commonly used candidate for Txr, reported by
default in most software packages, is Ty = (n—
1) Fnme (S, Z(éNTML)). Under correct model specification and
normal data, Ty, converges to a chi-square distribution with
d=p(p+1)/2 — q degrees of freedom, where g is the num-
ber of freely estimated model parameters (Joreskog, 1969).

Another candidate for Txr is the reweighted least squares
(RLS) statistic

=(0)2(0)™).

Here 0 is any consistent estimator, e.g., éNTML. Just as
Twmr, Tris is asymptotically chi-square distributed with d
degrees of freedom under correct model specification and
normal data (Browne, 1974). However, recent work by
Hayakawa (2019) and Zheng and Bentler (2022) suggests that
Trys converges to its limiting distribution quicker than Tyy.
That is, at a given sample size with normal data, Tgrs was
found to better maintain Type I error control than Ty .

N
TRLS = Etr((S -

1.2. Robustified Tests for Non-Normal Data

The chi-square sampling distribution of Tyr is distorted
when the data fails to be normal (Micceri, 1989; Cain et al,,
2017). Under correct model specification, its asymptotic dis-
tribution is a weighted sum of independent chi-square varia-
bles, each with one degree of freedom:

S Lg~ N(O,

d
b E: 2
TNT njoo - }\’JZ]’ Zl, 1) 11D (1)
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where the weights A = (A, ..., %)  are the non-zero eigen-
values of the matrix product UF The matrix U depends on
model characteristics. Let A= a%ge)’ where o(0) =
vech(Z(0)) is the half-vectorization of X(8), i.e., the vector
obtained by stacking the columns of the square matrix X(0)
one underneath the other, after eliminating all elements
above the diagonal. Then U=w-wAAWA} AW
where W =1/2D (% 0)'®=(0)"')D, (Satorra and
Bentler, 1994), and D, is the duplication matrix (Magnus
and Neudecker, 1999). The matrix I' is the asymptotic
covariance matrix of the sample covariances and depends
solely on the data distribution.

To make use of eq. (1), consistent estimates, i.e., esti-
mates that converge in probability, of the quantities U,I’
and 4 must be available. Since eigenvalues are the roots of a
polynomial, they are continuous functions of the polynomial
coefficients (Harris and Martin, 1987), and we may estimate
A consistently by ) given as the eigenvalues of UT, pro-
vided U and T are consistently estimated by U and T’
respectively. A consistent estimator U of U can be obtained
by replacing 6 with an estimate 0. Under standard assump-
tions, O will be consistent (Satorra, 1989), implying that U
is consistent as long as the mapping 80— U(8) is continuous,
which we will assume. We will also assume that consistent
estimators of I' are available. A standard estimator of I" is
the moment-based I'y defined in e.g., Section 3 of Browne,
1984, which is consistent as long as the observations have
finite eight order moments.

The most well-known robustification procedure is the
Satorra-Bentler (SB) scaling (Satorra and Bentler, 1988) and
involves scaling Tnxt by a factor so that the asymptotic
mean of the resulting statistic matches the expectation d of
the nominal chi-square distribution:

d

Tsg = m Tnr. (2)

This results in a p-value given by
P(Xé > t)t:TSB’

where y3 is a chi-square distribution with d degrees of
freedom.

Asparouhov and Muthén (2010) proposed to scale and
shift (SS) the statistic Tnr,

Tss =alny +d— D,

where a = \/d/tr((UT')?) and b = \/d(tr(Uf))z/tr((Uf)z).

The statistic Tss has the same asymptotic mean and variance as
the reference chi-square distribution. Similarly to the SB-pro-
cedure, the resulting p-value is

P(yxg > 1), g,

Monte Carlo studies (e.g., Foldnes and Olsson, 2015)
report that Tsg tend to overreject and Tsg tend to underre-
ject correctly specified models.

Eigenvalue block averaging (EBA) is a recent effort to
improve upon Tsg and Tss by defining a flexible class of
test statistics (Foldnes and Grenneberg, 2017). First, the d
non-zero eigenvalues of UT" are sorted in increasing order,




711 < 712 <...< 71,1. These eigenvalues are then grouped
into several equally sized bins, or blocks, and the block aver-
ages are calculated. Then, a vector of weights A;, ..., A4 is
constructed by replacing the eigenvalues with their block
averages. For instance, in two-block EBA, denoted EBA2,
the first block has

M= = = ) A
4721 £;
where [.] denotes rounding up to the nearest integer, while

the second block has
d

1 .
a-TaE 2

j=[d/2]+1

X]'d/ﬂﬂ c= g =

The corresponding p-value for the goodness-of-fit test is
then obtained as

]A)EBAZ :H(TNT§7N\'1) ~~-)7\4d)> (3)
where
d
H(t;l, ..., 1) = lezf >t (4)
=1
for independent standard normal variables Zy, ..., Z;.
For a single block, each 7\ for j=1,...,d equals the
average of all estimated elgenvalues A - kd That is,

d
_1;)1

for j=1,...,d. The sum of the eigenvalues of a square
matrix equals its trace. Therefore, A = tr(UT")/d, and by

eq. (2), we have

TNT/X = Tsp. (5)
Since
d
H(t; A Z lZJZ >t = P(X,zj > q)q:t/l’
j=1

eq. (5) shows that

Pepar = H(Tnrs &y - &) = P(y > Bty -

That is, the p-value for a single block is identical to the
Satorra-Bentler p-value.

This argument can be applied to any number of blocks,
giving p-values for EBA3, EBA4, and so forth (Foldnes and
Grenneberg, 2017).

All the robustified tests require an estimate I' of the
asymptotic covariance matrix I'. Browne (1974) discussed
two estimators for I, which we refer to as I'y and I'y. The
former is asymptotically consistent and is currently the
default estimator used in software packages. The latter
is unbiased in finite samples, and asymptotically equivalent
to fA. It has recently attracted attention (Du and Bentler,
2022) as a promising alternative to fA. In addition, the
robustified tests require a candidate for Txr. In the present
study we consider candidates Ty, and Trys.

. 3

With two candidates for I' and two candidates for Txr,
there are four possible estimators for any quantity depend-
ing on them. So every robustified procedure considered in
the present study has four versions, and all of these are
included in our Monte Carlo design. We use the following
notation: the Tyt version is indicated as a subscript, and we
indicate the use of I'y instead of I'y by employing the
superscript UG. For instance, for the SB procedure we have

the versions SBy, SBris, SB&(L;, and SBEES

1.3. Asymptotically Exact Tests

We refer to test procedures whose Type I error control
under correct model specification converges to the nominal
level as asymptotically exact tests. The procedures SB, SS,
and EBA are not in general asymptotically exact. In other
words, the Type I error rate of, e.g., SB, will not necessarily
approach the nominal rate of 5% even in large samples. In
contrast, the three procedures next discussed are asymptot-
ically exact.

By imposing mild assumptions on the employed estima-
tor and the rank of A and I', Browne (1984) showed that
the asymptotically distribution-free (ADF) test statistic

A -1 -1 Ia—1 I a—

Tapr = n(s— &) | 7 = TAQTA) AT (s &)

asymptotically follows a chi-square distribution with d
degrees of freedom whenever I' consistently estimates I
Unfortunately, many studies (e.g., Curran et al, 1996;
Olsson et al., 2000) report that the ADF test requires very
large sample sizes to perform satisfactorily, due to the sam-
pling variance of the fourth-order moments involved in esti-
mating I'.

The second asymptotically exact test is the Bollen-Stine
bootstrap (Beran and Srivastava, 1985; Bollen and Stine,
1992). The procedure starts with linearly transforming the
observed data so that the model fits the transformed data
perfectly. Then, a p-value for the hypothesis of correct
model specification is calculated by drawing bootstrap sam-
ples from the transformed data set and fitting the model to
obtain a sequence of normal theory TE, bootstrap values.
The p-value is the proportion of the TE values that exceed
the original Tyt value obtained in the original data sample.
The number of bootstrap samples is typically at least 1000,
so the bootstrap is a computationally intensive method. This
likely explains the scarcity of Monte Carlo studies that
evaluate the Bollen-Stine bootstrap. Also, most of these
studies focus on small models with no more than 11
observed variables (Fouladi, 1998; Ichikawa and Konishi,
2001; Nevitt and Hancock, 2004; Foldnes and Grenneberg,
2019). For larger models, to the best of our knowledge,
Ferraz et al. (2022) is the only available study, including up
to 30 observed variables. For small models with 10 observed
variables, the results of Ferraz et al. (2022) were in line with
previous studies in finding that the Bollen-Stine bootstrap
adequately controlled Type I error rates. However, for larger
models Ferraz et al. (2022) concluded that the empirical
rejection rates were too low. For instance, with 30 observed
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variables and the largest sample size included (n=1000),
the rejection rates were in the range 1.8%- 2.6% at the 5%
level of significance. In our Monte Carlo study, we expand
the number of observed variables to 40 and employ a larger
set of non-normal data conditions than previously consid-
ered, to gain further insight into the Bollen-Stine bootstrap.

The third asymptotically exact test uses the estimated
eigenvalues of UI directly. Since this is equivalent to block-
averaging eigenvalues with blocks of size one, so that Xj =
Ajfor j=1,...,d, we may consider this an EBA type pro-
cedure, with p-value given by

k)

where H is defined in eq. (4). This procedure is identical to
using d blocks (which are then singleton sets) in EBA, and
we refer to it as EBAd. Since EBAd has not yet been studied
in the literature, it is included in our Monte Carlo investiga-
tions. The estimated eigenvalues will converge toward their
population counterparts as the sample size increases, so
EBAd is asymptotically exact. The sampling variability of
estimated eigenvalues is, however, so large that impractical
sample sizes may be required to obtain acceptable Type I
error control. Figure 1 illustrates the final sample fluctua-
tions in the estimated eigenvalues in a ten-dimensional two-
factor model with non-normal data. The model has 34
degrees of freedom, and hence 34 associated non-zero eigen-
values. In the figure, the crosses represented the population
values, i.e., the eigenvalues of UI', in increasing order, with
a range 1.12--1.27. We simulated 200 samples of size
n=1500 and extracted in each sample the sorted eigenval-
ues of UT". For each rank i =1, ...,34, the corresponding
estimated eigenvalues are represented by box plots. We
make the following observations: (i) The estimates have
high sampling variability, especially the largest eigenvalues.
(ii) The higher eigenvalues are consistently overestimated,
and the lower eigenvalues are consistently underestimated.
(iii) Most of the box plots do not cover their corresponding
population eigenvalue. These observations suggest that dir-
ectly using the estimated eigenvalues to approximate the
sampling distribution of Tyt may not work well. While
both the SB and the EBA procedures attempt to handle the
sampling variability of eigenvalues by averaging sets of
eigenvalues, earlier literature has not addressed the problem
of under- and overestimation. The new approaches pro-
posed below take the systematic bias into account and are
designed to work well when the eigenvalues are related to
the true eigenvalues in the same way as in Figure 1.

Before we turn to the new estimation methods, we
explain why the pattern shown in Figure 1 is expected to
occur also in conditions not covered by our Monte Carlo
study.

ﬁEBAd = H(Txr; 711’ ..

1.4. Estimated Eigenvalues and the Empirical Spectral
Function

The set of eigenvalues of a matrix are not ordered in and of
themselves, although we can naturally sort the eigenvalues

3
[0)
22
©
> +
- ééééééxxxxxxx
4 xxxxxxxxxxxxxx;;¢$¥*+
-
+-|--1-'|"|"H"II
o
0
0 10 20 30
Rank order

Figure 1. Population and estimated eigenvalues for a ten-dimensional CFA
with 34 degrees of freedom. The X represent population eigenvalues, while the
boxplots represent estimated eigenvalues across 200 replications at sample size
n=1500.

in increasing order. What are the statistical consequences of
this ordering?

To build intuition, let us consider a highly simplified
scenario where the eigenvalue estimates are independent
and normal. We observe the set

S={Xy,...Xs}, d=34
where Xj, ..., X, are independent, X, ..., X5 ~ N(2.5,1),
and Xy, ..., X34 ~ N(3.5,1). Although there is an order to

the observations in our notation, we only observe the
unordered set S, which plays the role of the estimated eigen-
values. This emulates a situation where UI" has 34 eigenval-
ues, each equal to either 2.5 or 3.5.

If we plot the sorted eigenvalues Xy £ X < X
against their rank (i/d,X(;) and connect these points via
straight lines, the resulting curve is the empirical quantile
function of the data. This curve will approximate the popu-
lation quantile function. To see why, recall first that the
empirical quantile function is a generalized inverse of the
empirical distribution function

d

F(x) = %Z H{X; < x} (6)

i=1

where I{A} is the indicator function of A, being 1 if A is
true and zero otherwise. This empirical distribution function
F  uniformly approximate F(x) = EF(x) (Shorack and
Wellner, 2009, Chapter 25). Under the assumed distribution
for Xy, ..., X3, we get F(x) = 2d(x —2.5) + 5 O(x - 3.5).
The empirical quantile function will therefore approximate
the inverse of F, which we may denote by Q(p). Therefore,
a plot of (i/d, X;) will be close to (i/d, Q(i/d)).

Figure 2 is based on a single realization of X, ..., Xza.
The quantile function Q is plotted in red, the plot of
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Figure 2. The sorted simulated data plotted against i/d fori = 1,2, ...,d. the
curve in red is the theoretical quantile function. The curve in blue is the empir-

ical quantile function. The dotted black values are the levels of the
observations.

(i/p, X)) in black, and the empirical quantile function in
blue. The black curve is not visible as it is overwritten by
the blue curve. Figure 2 displays shapes similar to the eigen-
values plotted in Figure 3. There is systematic over- and
underestimation of these values for i/d near zero or one, an
effect that is due solely to sorting.

While the estimated eigenvalues (A;) converge to /; the
variation in (A;) will be considerable for realistic sample-
sizes. A plot of (i/d,%;) will have the shape of an empirical
quantile curve defined by the same formula as E above (6),
but with A; in place of X;. Such objects are known as empir-
ical spectral functions and play an important role in random
matrix theory (Pastur and Shcherbina, 2011; Paul and Aue,
2014). We conjecture that the empirical spectral function of
UT converges to a population function as d and # increases,
so there is a limiting curve that plays a similar role as the
red curve in Figure 2. With insights into this limit curve, a
principled  estimation procedure for approximating
Al ..., Ag could be developed in future work.

1.5. New Goodness-of-Fit Tests Based on Penalized
Estimation

In this section, we introduce and motivate new procedures
for obtaining p-values based on penalization of the esti-
mated eigenvalues. Technical arguments are deferred to the
online supplementary material.

Similar to the EBA procedures, the new tests takes the
estimated eigenvalues %, ...,A4 as input. From these val-
ues, regularized estimates Aj, ...,A, are produced as next
discussed, and these are used to calculate a p-value for the

goodness of fit test using H in eq. (4):
H(TNT; 5\.1, e ,Xd).

For illustration, we continue with the eigenvalues associ-
ated with the factor model discussed in Section 1.3 (Figure 1),
which has 34 degrees of freedom. Here, however, we consider
a single random sample of size n = 1500 and the correspond-
ing set of estimated eigenvalues, using I'4. These estimates
and their corresponding population values are plotted in
Figure 3. Also, the figure depicts four sets of approximated
eigenvalues: First, the SB eigenvalues are plotted, all with the
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Figure 3. Estimated eigenvalues and associated weights for EBA and regression
procedures. EBA2 =2-block EBA, pEBA2=penalized 2-block EBA, pOLS=
penalized regression, SB = Satorra—Bentler.

same value, namely the mean eigenvalue of 1.10. Second, the
EBA2 approximations are depicted, with the 17 smallest
eigenvalues set at the mean value 0.79 and the 17 largest
eigenvalues at the mean value 1.41. The two remaining eigen-
value sets in the figure, pEBA2 and pOLS, are obtained by a
process explained in the next two subsections.

1.6. Penalized EBA

The EBA procedure may be modified naturally to counter-
act the bias observed in Figures 1 and 3. Figure 3 also con-
tains a new set of eigenvalues in the intermediate positions
between SB and EBA2, which we call penalized EBA2 and
denote by pEBA2. The connection to penalized estimation is
explained in the online supplementary material. pEBA2 con-
sists of a two-block set of weights (71]) equal to the average
of the SB and the EBA2 weights. In Figure 3, the first block
of weights contains the mean value of 1.10 and 0.79, which
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is 0.95. Likewise, the second block has weights equal to the
mean of 1.10 and 1.41, namely 1.26.

The procedure may be performed in the same manner for
any number of blocks. That is, we average the EBA weights
block by block with the overall average eigenvalue and thus
obtain penalized versions pEBA3, pEBA4, and so forth.

The additional averaging employed in penalized EBA
attempts to counteract the systematic bias observed in
Figures 1 and 3. By anchoring the EBA eigenvalues closer to
the global average, the overestimation for the larger eigen-
value estimates is reduced, while still not restricting the
eigenvalues to be constant. Similarly, the underestimation of
the smaller eigenvalue estimates is also reduced.

1.7. Penalized OLS

The penalized OLS procedure can be motivated by a simple
heuristic. Let (A;) be the population eigenvalues and run a
simple linear regression based on (i, k) _, to obtain the
OLS estimates 3, and B,. The ith eigenvalue — which is
positive since UT is positive definite - can now be approxi-
mated by A; = max(f, + B,i,0). This linear approximation
inherits the systematic bias observed in Figures 1 and 3,
causing the slope to be overestimated. A natural remedy to
this sort of overestimation is to down-weight the regression
slope using ridge regression, a well-known penalized form
of OLS, which we refer to as pOLS.

The extent of down-weighting is represented by a param-
eter v > 1 that is applied to the OLS slope parameter f3;:

1
Bi(v) ==B. )
Y
The corresponding ridge regression intercept is
_ o d
Bo(v) = A =PBy(v)ia Ga:=d') i=(d+1)/2. (8

i=1

The standard OLS estimates are recovered when y=1.
For y — oo, we obtain B, = 0 and B, = A, or the Satorra-
Bentler weights. Simulations show that y=2 works well,
and we will use it in the remainder of the article. Figure 3
shows the predictions of pOLS.

1.8. RMSEA with Eigenvalue-Based Tests

The RMSEA is a popular measure of approximate fit origi-
nating from the work of Steiger (1990). Using the Satorra-
Bentler method, Li and Bentler (2006) found the formula

d
S )

Here /; are replaced by estimated values in practice. In
the online supplementary material, it is shown the proposed
penalized eigenvalue-based estimators have the same sum as
the Satorra—Bentler estimate, and that the above formula for
the RMSEA also holds for these procedures.

2. Monte Carlo Simulation

We considered a two-factor model x = Af + € where x =
(x1, ...,x,) is a p-dimensional vector of observed variables,
f is a two-dimensional latent vector, and € is a p-dimen-
sional vector of uncorrelated residuals, which is also uncor-
related with f. The model had simple structure, with
X1 -5 Xp)2 loading on the first factor and Xp/241> -+ Xp
loading on the second factor. We included three model sizes
with p = 10,20, and 40, and corresponding degrees of free-
dom d = 34,169, and 739. This study was not preregistered.
The model specifications are available at https://osf.io/
6trwu/, together with a database of eigenvalues for each
replicated dataset in the present study. The eigenvalues are
given for both the biased and the unbiased I' estimators.
The database also contains Ty and Tgis and may be used
for fast assessment of new variants of eigenvalue-based
procedures.

2.1. Population Model

To represent a realistic scenario, we used heterogeneous fac-
tor loadings with standardized loadings uniformly drawn in
the range [.3,.8]. Such loadings reflect values typically found
in empirical studies (Li, 2016). The residual variances were
then chosen to ensure that the observed variables had unit
variance. The factor loadings were nested between models,
e.g., for p=20 the first five loadings for each factor were
equal to the corresponding loadings in the p=10 model.
The interfactor correlations in all models were set to .5. For
p =10, the 45 correlations in the observed variables ranged
from .08 to .56. For p =20 the 190 correlations ranged from
.08 to .64. The 780 correlations in the p =40 model ranged
from .045 to .64.

2.2. Data Distributions

For each population model, data were drawn from seven
distributions. The distributions consisted of the normal dis-
tribution and six non-normal distributions. Three of the
non-normal distributions had moderate marginal skewness
and kurtosis (Curran et al., 1996) taking values 3 and 7, and
the other three had severe marginal skewness and kurtosis
(with values 3 and 21). We crossed the two marginal non-
normality levels with three data distributions: The independ-
ent generator (IG) distribution (Foldnes and Olsson, 2016),
the piece-wise linear (PL) distribution (Foldnes and
Greonneberg, 2021), and the well-known Vale-Maurelli
(VM) distribution (Vale and Maurelli, 1983). We use the
notation VM1 and VM2 for the VM distributions with the
moderate and severe levels of marginal skewness and kur-
tosis, and similarly for the IG and PL distributions.

Including several classes of non-normal distributions was
necessary for the external validity of the study, and was also
required for investigating test performance while controlling
for marginal skewness and kurtosis. However, note that
even with the same skewness and kurtosis, the IG, PL, and
VM distributions are different.



2.3. Sample Size

We generated data at sample sizes n = 400, 800, 1500, and
3000, to reflect a range of sample sizes routinely used in
empirical investigations.

2.4. Goodness-of-Fit Tests

All test statistics were calculated from normal-theory ML
estimates. For the robustified tests and EBAd we considered
four candidates, obtained by combining base statistic (T
or Tgys) and estimator of the asymptotic covariance matrix
(f A Or f‘ U)'

A total of 43 test statistics were evaluated, including the
base statistics Ty or Tris. For the robustified tests we
included the traditional tests Tsg and Tss (a total of 8 candi-
dates), the EBA procedures EBA2, EBA4, and EBA6 (12
candidates), the penalized EBA procedures pEBA2, pEBA4,
and pEBA6 (12 candidates), and the pOLS test (4 candi-
dates). Among the asymptotically exact tests, we included
the Bollen-Stine bootstrap based on Ty, and the EBA pro-
cedure with singleton blocks, EBAd (4 candidates).

2.5. Data Generation and Analysis

Crossing model size, distribution, and sample size resulted
in 84 (3-7-4) simulation conditions. We generated 3000
datasets for each condition. All tests except Bollen-Stine
were evaluated in each condition based on 3000 replications.
The computationally expensive Bollen-Stine test was com-
puted only for n=800 and n=3000, and in the largest
dimension (p=40) the number of bootstrap replications
was reduced to 1000.

All models were estimated using the maximum likelihood
estimator in lavaan (Rosseel, 2012). The package covsim
(Gronneberg et al.,, 2022) was used to simulate from the IG
and PL distributions and the package lavaan was used to
simulate VM distributions. The goodness-of-fit p-values were
calculated using the newly developed package semTests. The
package CompQuadForm (Duchesne and De Micheaux,
2010) computed the p-values of the type given in Eq. (3).

2.6. Evaluation Criteria

We employed three evaluation criteria based on the
observed percentage rejection rates (RR), obtained in each
of the 84 conditions as the percentage of p-values below .05.
Hence, we adopted the commonly used significance value
of o = 5%.

Our first criterion is the root-mean-square error (RMSE),
which is a measure of the discrepancy between the observed
rejection rate RR and the nominal 5% rejection rate:

RMSE = /3", (RR, — 5)*/C, where C denotes the number

of conditions we are interested in. For instance, if we look
at the smallest model size, and we include all distributions
and sample sizes, C=7-4=28. Our second criterion,
the mean absolute deviation (MAD), is also a measure of
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the difference between the empirical rejection rates and the
nominal rejection rate, defined as MAD = > (|RR. — 5|)/C.

Our third criterion yields the percentage of acceptable
rejection rates (ARR), defined as the proportion of condi-
tions ¢ for which 2.5% < RR, < 7.5%, (Bradley, 1978).

Given the large number of test candidates under evalu-
ation, in addition to reporting these three criteria, we also
sort the tests according to their RMSE performance in many
of our result tables. We acknowledge that the sorting shifts
the order of test statistics between tables, making it more
difficult to compare the performance of a given test candi-
date across conditions. However, the sorting greatly facili-
tates the identification of the best-performing tests by
inspecting the upper part of the result tables.

3. Results
3.1. ML, RLS and Robustified Tests

We evaluated two tests based on normality, either with ML
and RLS, and 38 robustified tests.

3.1.1. Normal data

Type I error rates in the 12 conditions with normal data are
presented in Table 1. For each model size, we have sorted
the test statistics according to increasing RMSE values across
the four sample sizes. At the smallest model size, p =10, the
normal-theory statistics Ty and Trrs performed well, as
expected. All 40 test candidates had acceptable rejection
rates, ARR = 1, at all sample sizes. The MAD ranged from
0.3% for ML to 0.733% for EBA4YS.

With increasing model size, test performance generally
deteriorated, as expected. Especially striking was the poor
performance of ML in comparison to RLS. For instance, for
p=20 and p=40 the MAD of ML was 1.18% and 5.85%,
respectively. In comparison, the MAD of RLS was negligible
for p=20 and p=40: 0.29% and 0.51%, respectively. Also,
for dimensions p=20 and p =40 the robustified test SBy%
was a top performer. Indeed, this test was the overall winner
in terms of RMSE when collapsed over all 12 conditions,
with RLS as the runner-up.

3.1.2. Non-Normal Data
Type I error rates for all tests in the 12 conditions (3 models,
4 sample sizes) are tabulated for each non-normal distribu-
tion in the supplementary material, see Tables B2-B7. In
Table 2 we report aggregated results over the six non-normal
distributions. Test performance was calculated for each model
size, across six distributions and four sample sizes, and test
candidates were ranked according to increasing RMSE.

Under non-normality, the normal-theory statistics ML
and RLS performed poorly. In fact, in none of the 72 non-
normal conditions did these tests achieve an acceptable
rejection rate.

Expectedly, the normal-theory tests were outperformed by
the traditional robustified tests, SB and SS. Generally, SB out-
performed SS, and the SB candidate with the consistently
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Table 1. Type | Error rates, normal data.

p=10 p=20 p=40
n n n
Test 400 800 1500 3000  Test 400 800 1500 3000 Test 400 800 1500 3000
ML 48 5.7 48 5.2 RLS 5.4 49 5.4 47 SBUS 438 45 48 45
sB 47 5.8 438 5.2 SBYS 4.8 47 5.4 46 RLS 6.2 53 5.0 45
RLS 44 5.6 46 49 PEBA2g1s 438 47 5.4 46 PEBA2gs 45 4.0 45 43
SBUS 44 5.7 438 5.1 SBaLs 5.6 5.1 55 47 SBris 6.8 55 5.2 4.6
PEBA2 44 5.7 438 5.2 pOLSgs 45 45 53 45 PEBA2yG 5.4 37 4.2 38
PEBA4 44 5.7 438 5.2 PEBA4gLs 45 45 5.4 45 POLSgis 34 33 42 40
PEBAG 44 5.7 438 5.2 PEBAGRLs 44 45 53 45 PEBA4ps 33 33 43 40
pOLS 44 5.7 48 5.2 EBA2 5.0 4.1 53 46 PEBA2RS 33 32 4.2 4.0
PEBA4YC 42 5.6 47 5.1 PEBA4YC 5.9 47 5.6 4.8 EBA2 75 44 44 40
PEBAG6YS 4.2 5.6 47 5.1 PEBA6YC 5.9 47 5.6 438 PEBAGgLs 3.1 32 4.2 4.0
pOLSUS 42 5.6 47 5.1 pOLSYe 5.9 47 5.6 438 EBA4 3.1 25 36 36
PEBA2YS 42 5.6 47 5.1 PEBA2YS, 4.1 43 53 45 pOLSYS 25 2.7 37 37
SBhLs 44 5.9 46 5.1 PEBA2Y® 6.1 5.0 57 48 PEBA4DS 24 26 38 37
EBA2 4.1 5.4 45 5.1 PEBA2uG 4.2 338 5.2 45 PEBAG6US. 2.1 24 37 37
PEBA2gs 4.1 57 4.6 5.0 pEBA4YS 3.8 4.1 5.2 45 EBA6 24 23 33 35
PEBA4gLs 4.1 5.7 46 49 pOLSKS, 3.8 40 5.2 44 EBA4YS 22 22 32 3.4
PEBAGLs 40 5.7 46 49 PEBA6YS, 338 40 5.2 44 ss 20 22 33 35
SBh 40 5.7 46 49 PEBAG6 6.6 53 5.7 438 PEBAGS 9.6 6.4 53 47
POLSgs 40 5.7 46 49 EBA4 4.0 36 52 45 EBA6YC 18 2.1 3.0 32
PEBA2US 38 55 46 49 pOLS 6.7 53 5.7 438 $5Y6 15 20 28 32
EBA4 38 5.4 44 5.0 PEBA4 6.7 53 5.8 438 EBA2p.s 14 16 28 3.1
ss 38 5.4 44 5.0 ss 338 36 5.2 45 PEBA4US 104 6.8 55 47
PEBA2yc 38 5.4 43 5.0 EBA6 338 35 5.1 45 pOLSYS 109 6.9 5.5 47
EBAG 38 5.4 43 5.0 EBA4YS 36 33 5.0 44 EBA2YS, 1.0 13 26 3.0
PEBA4DS 37 55 45 4.8 PEBA2 7. 5.4 5.8 49 EBA4p.s 0.4 11 23 29
PEBAGUS 37 55 45 48 sBUG 7.2 5.4 5.8 49 EBAGpLs 03 0.9 22 29
POLSHE 37 55 45 48 55v¢ 35 33 5.0 44 SShis 0.2 038 22 29
EBA2g.s 36 54 4.5 48 EBA6'C 35 33 5.0 44 EBA4RS 0.2 08 2.1 2.8
55Y6 36 53 43 49 EBA2p.s 32 33 49 43 EBAGLS 02 0.7 1.9 27
EBA4.s 35 53 45 47 EBA2} 2.8 3.1 47 4.2 Sses 02 0.7 1.9 27
SShis 35 53 45 47 ML 7.8 5.9 6.0 5.0 PEBAG 124 7.6 5.9 438
EBA4UC 36 53 43 49 EBA4pLs 24 3.0 47 4.2 pEBA2UC 13.0 7.6 5.8 48
EBA2}S 35 53 44 47 SB 8.0 6.0 6.1 5.0 PEBA4 132 7.8 6.0 438
EBAGp.s 35 53 44 47 SShis 23 30 47 42 pOLS 14.0 7.8 5.9 438
EBA6YS 35 53 43 49 EBAGRLs 23 3.0 47 4.1 PEBA2 16.4 8.7 6.4 438
5598 33 5.2 43 47 EBA4YS 20 2.8 44 4.1 SBUS 175 9.8 7.0 5.1
EBA4LL 33 5.1 43 46 SSHS 1.8 2.8 44 4.1 ML 20.2 105 74 53
EBAGR 33 5.1 43 46 EBAGR 1.8 28 44 4.1 SB 216 111 7.4 53

Within each dimension, the tests are sorted according to increasing RMSE.

best performance was SBY. The standard SB test, which is
based on ML and I’ A>» performed remarkably worse than
SBYG, which is based on RLS and I'y. For instance, collapsing
over all 72 non-normal conditions, the MAD of SB and SBR%
was 3.28% and 1.63%, respectively. Also, the ARR of SB was
65.3%, compared to 76.4% for SBy%. Among the SS candidates,
performance was best when based on ML and I'y. However,
even for this candidate, SS, had overall poor performance, espe-
cially in the large model, where ARR was zero.

Many candidates in the family of newly developed proce-
dures (EBA, pEBA, and pOLS) outperformed the SB and SS
procedures. The RMSE rank in Table 2 of the best trad-
itional robustified test, SBy%, was 17, 20, and 18 for dimen-
sions 10, 20 and 40, respectively. To further give an
overview of the best-performing tests, we aggregated also
over model size, with the resulting ten best performers (in
terms of RMSE) presented in Table 3. This table hence is
based on collapsing 72 conditions (six distributions, four
sample sizes, and 3 model sizes). The top nine performers
in Table 3 all belong to the new class of penalized

eigenvalue modeling. Also noteworthy, eight of the ten tests
are based on RLS, and only two on ML.

To investigate in full detail the performance of some of
the best tests in Table 3, we picked the top candidate from
the pEBA2, pEBA4, pEBA6, and pOLS families, namely
EBA2YS, pEBA4grs, pEBAG6Ris, and pOLSy . The rejec-
tion rates in all 72 conditions of these four candidates are
plotted in Figure 4. The figure also includes the best candi-
date in each of the traditional families of robustified tests:
SBYS for SB, and SS for SS. A consistent pattern is that the
newly developed tests were associated with rejection rates
intermediate between SS, which severely under-rejected, and
SBY, which tended to over-reject. The figure demonstrates
that goodness-of-fit testing was more challenging in larger
models, while larger sample sizes are associated with better
Type I error control. Also, the distributional type affected
the test procedures. Under normality (see also Table 1), all
tests performed well, except SS in the largest model. Under
non-normality, we see that performance depended on mar-
ginal kurtosis, as expected, with overall MAD (across tests,



Table 2. Test performance across 6 non-normal distributions and 4 sample sizes, ranked in increasing RMSE order.

p=10 p=20 p=40
Test RMSE MAD ARR Test RMSE MAD ARR Test RMSE MAD ARR
pOLSYS 0.63 0.54 1000 pOLSg;s 1.25 093 87.5 PEBA4gLs 144 131 95.8
POLSgss 0.64 053 100.0 PEBA4gLs 1.25 0.96 91.7 PEBA4YS 1.66 1.46 83.3
pOLS 0.64 055 100.0 pOLSYS, 130 1.06 91.7 POLSgs 171 1.52 87.5
PEBA2US 0.65 0.54 1000 PEBAGLs 1.30 .1 95.8 PEBAGRLs 1.76 1.55 87.5
PEBAG 0.65 0.56 100.0 PEBA4YS 130 1.08 91.7 PEBA2YS 1.80 1.29 83.3
PEBA4YS 0.65 0.56 100.0 PEBA6YS 1.45 1.25 95.8 pOLSLS, 214 1.94 70.8
PEBA4ps 0.66 0.54 1000 pEBA2US 1.46 1.02 87.5 PEBAGUS. 216 2.00 70.8
PEBA4 0.66 0.57 100.0 pEBA4UC 1.61 131 87.5 EBA2pi 234 213 417
PEBA2q 0.67 0.57 100.0 pOLSYS 1.63 1.30 87.5 PEBA6Y 258 217 54.2
PEBA2US 0.68 058 1000 PEBA6Y® 1.64 1.42 833 EBA2US 262 241 37.5
PEBAGLs 0.69 0.57 100.0 PEBAG 1.66 1.36 87.5 poLsSYe 262 220 54.2
PEBAGYS 0.70 0.57 100.0 PEBA2p1 172 114 79.2 PEBA2u6 263 237 458
pOLSLS 0.72 0.60 1000 PEBA4 177 1.27 87.5 EBA2 276 232 62.5
PEBA4RL 073 061 100.0 pOLS 1.78 125 833 pEBA4YC 276 214 62.5
PEBAGHS: 0.79 0.67 100.0 EBA2pis 1.81 1.68 91.7 PEBA2p1s 2.77 1.70 75.0
PEBA2 0.80 0.66 1000 EBA2 1.81 1.64 87.5 PEBAG 295 232 58.3
SBLG, 0.89 072 100.0 PEBA2YS 1.97 127 833 pOLS 3.04 233 54.2
SBhLs 1.05 0.87 100.0 PEBA2y6 1.97 1.80 87.5 SBYS, 333 249 58.3
SBYUS 1.07 0.86 1000 EBA2US 2.02 1.85 75.0 PEBA4 3.55 244 58.3
EBA2 117 093 100.0 SBUS 230 1.70 708 EBA4 3.75 3.56 208
B 130 1.06 100.0 PEBA2 2.31 1.58 75.0 EBA4YS 3.92 3.76 16.7
EBA2q.s 1.31 1.06 95.8 SBrLs 2.84 2.20 62.5 EBA4ps 4.02 3.94 83
PEBA2yG 133 1.08 95.8 SBYUS 292 216 66.7 EBA4US 4.14 4.07 42
EBA2S 147 121 95.8 EBA4 2.96 271 417 EBAG 4.16 4.05 125
EBA4 1.93 1.69 75.0 EBA4p.s 3.08 2.88 375 EBAGYS 4.26 417 42
EBA4.s 1.98 1.75 75.0 EBA4YS 3.09 285 37.5 PEBA2YS 4.27 278 66.7
EBA4YC 2.06 1.82 75.0 EBA4RS 321 3.01 25.0 EBAGs 435 4.29 42
EBA4YS 210 1.88 66.7 EBAG 330 3.05 375 EBAG6US 442 437 42
EBAG 222 1.97 708 EBAGC 3.42 318 29.2 ss 462 459 0.0
EBAGpLs 225 2.02 66.7 EBAGgLs 343 323 25.0 s5Y6 465 4.62 0.0
ss 229 2.03 70.8 B 3.50 2.69 54.2 SShis 472 470 0.0
EBAGYS 233 2.09 66.7 EBAGRS 3.54 333 25.0 SSpS 474 472 0.0
EBAGLS, 234 2m 66.7 ss 378 3.61 208 SBhis 476 3.66 458
SShis 237 213 66.7 s5Y6 3.85 3.69 208 PEBA2 5.82 3.79 58.3
s5v6 241 216 66.7 SShis 3.88 3.74 208 SBUS 6.48 453 458
S5YS 245 221 62.5 Y 3.95 3.81 16.7 sB 8.50 6.08 417
RLS 48.84 39.58 0.0 RLS 76.73 69.55 0.0 RLS 79.48 7215 0.0
ML 49.24 4010 0.0 ML 77.26 70.48 0.0 ML 80.85 75.33 0.0

RMSE: root mean square error in percentage; MAD: mean absolute deviation of rejection rates from 5%; ARR: percentage of acceptable rejection rates.

Table 3. Top ten robustified tests according to RMSE when aggregating 6
non-normal distributions, 4 sample sizes and 3 model sizes.

Test RMSE MAD ARR
PEBA4gs 1.16 0.94 95.8
pOLSgs 1.28 0.99 917
pEBA4YS 1.29 1.05 91.7
PEBAGR(s 132 1.07 944
pEBA2YS 1.39 0.95 90.3
pOLSHE 1.50 1.20 87.5
PEBAGYS 157 1.31 88.9
pEBA6YC 1.81 139 79.2
pOLSYS 1.82 135 80.6
EBA2gs 1.86 1.62 76.4

RMSE: root mean square error in percentage; MAD: mean absolute deviation
of rejection rates from 5%; ARR: percentage of acceptable rejection rates.

distributions, and model sizes) equal to 1.11% for the skew-
ness = 2, kurtosis = 7 condition (IG1, PL1, VM1) and
1.88% for the skewness = 7, kurtosis = 21 condition (IG2,
PL2, VM2). Also, there was some variation in overall test
performance among the underlying distributional class. The
overall MAD for distributions of type IG, PL, and VM was
1.56%, 1.50%, and 1.43%, respectively.

3.2. Asymptotically Exact Tests

Table 4 presents the Bollen-Stine rejection rates. The under-
lying distribution strongly affected test performance, with
severe overrejection for PL2 and partly for VM2. In the
large model, for PL2 and VM2, the rejection rate was virtu-
ally 100%, in striking contrast to the finding in Ferraz et al.
(2022) that the Bollen-Stine test tended to underreject in a
p =30 model. In contrast, under the normal and IG distri-
butions, Bollen-Stine consistently underrejected, reflecting
the findings in Ferraz et al. (2022). Overall, echoing the
findings of Ferraz et al. (2022), as model size increased,
Bollen-Stine performed poorly, even for n=3000.

Next, consider the asymptotically exact test EBAd. The
differences between the four EBAd candidates were small
(see Figure Bl in the supplementary material). Therefore, in
Table 5 we only report results for the default version, which
is based on ML and I's. The results are aggregated over all
7 distributions. The test exhibited poor Type I error control,
especially at low sample sizes, with severe underrejection.
The asymptotic superiority of EBAd was not yet detectable
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Figure 4. Rejection rates in % for six selected tests. Panel columns and rows correspond to model size and distribution, respectively.

at sample size n=3000. To further inspect the rate of con-
verge to nominal 5% rejection rates, and to confirm asymp-
totic consistency, we simulated some very large sample size
conditions (n = 10%,10°). Even at n = 10* the tendency to
underreject was still pronounced for dimensions p =20 and
p=40. For instance, for p=40 and n = 10* the overall
rejection rate across distributions was only 2.6%.

4, lllustration of the Package semTests

We demonstrate the use of the newly developed R package
semTests (Moss, 2024) by conducting a small power study.
Consider the model with p=20 observed variables used in
our Monte Carlo study (see supplementary online material
for the complete model specification). We first simulate a



Table 4. Rejection rate in % for the bollen-stine bootstrap.

n Distribution p=10 p=20 p=40

800 Normal 4.0 2.5 1.1
IG1 4.7 34 1.1
1G2 5.6 5.0 14
PL1 43 5.8 69.1
PL2 10.2 93.1 100.0
VM1 4.7 3.8 12.2
VM2 6.6 55.2 99.9

3000 Normal 4.5 43 24
IG1 4.7 3.8 2.0
1G2 4.5 5.1 34
PL1 3.7 4.6 64.1
PL2 10.7 95.5 100.0
VM1 4.7 45 7.6
VM2 54 56.8 100.0

Table 5. Rejection rate in % for the EBAd test procedure, aggregated over all
seven distributions.

400 800 1500 3000 10* 10°
p=10 20 29 30 40 438 49
p=20 0.8 1.1 19 26 3.8 47
p=40 03 0.4 0.8 12 26 48

n=2800 non-normal data set from this model using the
VM2 distribution. Then we run the pvalues() function from
semTests on the fitted model, using the default parameter
values. The default p-values reported were chosen from the
best-performing tests in our Monte Carlo study, in addition

to the best-performing traditional test SBY.

library (semTests); library(lavaan)

set.seed(1234)

X <- simulateData (m2, sample.nobs = 800,
— skewness = 3, kurtosis = 21)

f <- cfa(m2, data=Xx)

pvals <- pvalues (f)

round (pvals, 3)

#sb_ug_rls peba2_ug_rls pebad_rls pebab_rls
— pols2_rls

#0.106 0.1250.139 0.152 0.144

The reported p-values are similar, with SB[ having the
smallest p-value.

Next, we conduct a small power study with 1000 replica-
tions where n=2800 and data is drawn from a VM2 distri-
bution. Model misspecification is obtained by adding a
cross-loading with standardized factor loading of 0.4.

m2_misspecified_pop <- paste(m2, “; Fl=~start
— (0.4)*x11")

simres <- sapply(1:1000, \(i){

set.seed (1)

X <- simulateData (m2_misspecified_pop,
— gsample.nobs = 800, skewness = 3, kurtosis
— =21)

f <- cfa(m2, data=Xx)

pvalues (f)})

rowMeans (simres < .05)

#sb_ug_rls peba2_ug_rls pebad_rls pebab_rls
— pols2_rls

#0.7050.666 0.624 0.598 0.631

@ n

The rejection rates are ordered in the same way as
observed for the Type I errors in Figure 4 (see bottom mid-
dle panel at n=800). Highest power is achieved by SBR[,
which also had the highest rejection rate, 7.1%, among the
tests in Figure 4. Hence, in terms of power, SBIRJLGS outper-
formed the other test candidates. However, Type I error
control is a more fundamental requirement than adequate
power, and the other test candidates outperform SBR% in

terms of Type I error control.

5. Discussion

We have proposed and evaluated new goodness-of-fit meth-
ods for factor analysis and structural equation modeling
with non-normal data. The new methods pEBA and pOLS
apply penalization on the estimated eigenvalues of UT". The
pEBA methods were derived from the EBA approach
(Foldnes and Grenneberg, 2017) and the pOLS methods are
based on a linear approximation of the sorted eigenvalues,
where the penalization is obtained by dampening the slope.
We have provided a formal analysis of eigenvalue modeling
that motivates pEBA and pOLS.

In the past, many tests have been proposed to handle
goodness-of-fit testing under non-normality, and we con-
ducted a large Monte Carlo study to compare the Type I
error control of the new methods with well-known trad-
itional tests such as the Satorra-Bentler scaled test, the
scaled and shifted test, and the Bollen-Stine bootstrap test.
Moreover, we took recent developments into account by
acknowledging that the little-known normal-theory RLS test
(Browne, 1974) might outperform the classical normal-the-
ory ML test in multivariate normal conditions, and that
replacing the traditionally used asymptotically unbiased I'
estimator Iy by an unbiased estimator I'y might improve
test performance. Therefore, the Monte Carlo study eval-
uated four versions (ML/RLS, ['y/I"4) of each test statistic.

5.1. Practical Recommendations

For the special case of normal data, our results echoed ear-
lier findings (e.g., Hayakawa, 2019) in demonstrating that
the RLS test is far superior to the more commonly used ML
test. Therefore, we advise using Tgrys instead of Ty when
reporting goodness-of-fit in normal data conditions.

For non-normal data, our recommendations are as fol-
lows. Echoing Ferraz et al, 2022, we do not recommend
using the Bollen-Stine bootstrap test. This test is computa-
tionally heavy and was found to adequately control Type I
error only in the smallest model with 10 observed variables,
and then only for five of the six non-normal conditions. In
a model with 40 observed variables, we found the bootstrap
test to perform poorly even with a sample size of 3000.

For the Satorra-Bentler test, we demonstrated an
improved Type I error control by applying the scaling to
the RLS test statistic instead of the commonly used ML stat-
istic. Furthermore, performance is improved by replacing
'y by 'y when calculating the scaling factor. As in
previous studies (e.g., Foldnes and Olsson, 2015), the scaled-
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and-shifted test was found to perform poorly with severe
under-rejection in most conditions, and we discourage its
use unless the sample size is very large.

Overall, the nine best-performing tests in our Monte
Carlo study all were of pEBA or pOLS type. Based on Table
3, we recommend basing goodness-of-fit in non-normal
conditions on pEBA4g;s or pOLSg .

5.2. Limitations and Future Research

We have focused exclusively on continuous data. However,
the methods we propose are naturally applicable to ordinal
data analyzed using polychoric correlations. It is natural to
ask whether pEBA and pOLS outperform the currently
available methods in the testing of ordinal factor models,
such as the SS test used by lavaan (Rosseel, 2012).

The idea of eigenvalue penalization has not been fully
explored yet, and different variants could potentially result
in better test performance. A more thorough analysis of
eigenvalue modeling could shed more light on the subject.
Using uneven block sizes in the pEBA is another possibility.
Future estimation of the eigenvalues could also be based on
the limiting behavior of the spectral distribution of UT .

A natural extension of the present paper is to consider
power. That is, among tests that control Type I error, which
candidate best detects model misspecification? We consider
this as a topic for a future Monte Carlo study. The results
of such a study must involve balancing the primary concern
of Type I error control with the secondary concern of
power.

Our Monte Carlo design is limited in several ways. We
only considered factor analysis models, not more general
structural equation models. Moreover, the number of
observed variables ranged from 10 to 40, but models with
hundreds of observed variables are not uncommon in
applied research. A study of about 50-100 variables would
shed more light on such situations. We modeled three types
of non-normal distributions, across two conditions of mar-
ginal non-normality as measured in terms of marginal skew-
ness and kurtosis. But other kinds of non-normality is
certainly encountered in practice, and further research could
be conducted by employing more flexible non-normal distri-
butional classes such as the flexible VITA method suggested
by Grenneberg and Foldnes, 2017 and implemented in the
R package covsim (Grenneberg et al., 2022). Finally, we
considered model fit only for non-nested models. Nested
model testing is widely conducted in measurement invari-
ance testing, and the new test procedures can naturally be
applied also in these situations.

6. Conclusion

We have proposed several new methods for evaluating
model fit of structural equation models and evaluated their
performance in a Monte Carlo study of factor models. The
new methods outperform existing methods such as Satorra-
Bentler in terms of Type I error control. The overall best-
performing test, pEBA4g;s, performed adequately in 69 of

72 non-normal conditions. The new methods are available
in the R package semTests.
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