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ABSTRACT

Estimating interaction and quadratic effects in structural equation models (SEMs) is complex. Latent
product term (LPT) models, designed for interaction effects, also accommodate quadratic effects. After
30years of research, no consensus has emerged on the best modeling methods in SEMs, partly due to
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efforts to simplify approaches for accessibility. LPT models include product indicator (Pl) and distribu-
tion analytic (DA) approaches. While Pl methods are simpler, they sacrifice accuracy and can be error
prone. DA methods, like latent moderated structural equations (LMS) and Quasi maximum likelihood
(QML), are more accurate but computationally intensive. We introduce modsem, an R package that

simplifies these estimations and enhances accessibility.

1. Introduction

The estimation of interaction and quadratic effects in
Structural Equation Models (SEMs) has been an active
research topic for many years. One approach for estimating
these types of models in an SEM framework is using latent
product term models (LPT). LPT models were originally
developed for estimating interaction effects, i.e., product
terms between latent variables (Kenny & Judd, 1984), but
are also capable of estimating quadratic effects (Umbach
et al., 2017), since a quadratic effect implies a product term
of a variable with itself.

Although it has been over 30years since the first LPT
models for SEMs were presented, there is still a disagree-
ment in the literature about the best way to estimate such
models (Klein & Moosbrugger, 2000; Marsh et al., 2004,
2013; Schumacker & Marcoulides, 1998). While the scarcity
of research on the topic is one main reason for this continu-
ing debate, there has also been a parallel development in
terms of the priorities that the researchers have emphasized.
On one side, emphasizing the pragmatic implementation of
such models, methodological researchers have focused on
simplifying existing approaches to make them more access-
ible to applied researchers. On the other hand, more theor-
etically oriented researchers have focused on developing
more theoretically sound (but also generally more computa-
tionally expensive and less accessible) approaches.

As a consequence, interaction effects are less frequently
estimated when compared to linear models, even though
they are often theorized to exist (Steinmetz et al., 2011). In
summary, there is a lack of freely available statistical tools
for estimating interaction effects in SEMs, which makes the
approaches less accessible to applied researchers. The

absence of such tools is also a significant barrier for studies
comparing different approaches to estimating interaction
effects in different contexts.

To bridge the existing gap between theoretically hypothe-
sized and statistical models, there is a need for free user-
friendly statistical tools implementing the most recent and
theoretically sound approaches for estimating interaction
effects in SEMs, that can be applied even without a deep
understanding of the underlying statistical theory.

1.1. Different Approaches to Estimating LTP Models in
SEMs

Over the years, a wide range of different approaches to estimat-
ing interaction effects in SEMs have been recommended in the
literature. These can be broadly divided into two categories:

1. Product Indicator (PI) Approaches
2. Distribution Analytic (DA) Approaches.

In general, the PI approaches were intended to be per-
formed manually by the user and were estimated using tradi-
tional estimation approaches based on the sample covariance
matrix. These methods rely on implementing a set of con-
straints on products of indicators in the larger SEM. Early
implementations of that idea were particularly complicated
and error prone to specify (Joreskog & Yan, 1996; Kenny &
Judd, 1984; Schumacker & Marcoulides, 1998). This led to a
continuing trend of simplifying the approach to achieve mod-
els that are more easily implemented without sacrificing
model accuracy (Algina & Moulder, 2001; Lin et al.,, 2010;
Little et al., 2006; Martin & Marsh, 1999).
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Figure 1. Elementary interaction model.

On the other hand, the parallel development of DA
approaches, such as the Latent Moderated Structural
Equations (LMS) (Klein & Moosbrugger, 2000) approach and
the Quasi Maximum Likelihood (QML) (Klein & Muthén,
2007) approach, applied a different logic based on estimating
the interaction effects from the distributional characteristics
of the indicators for the endogenous variables.

1.2. Product Indicator (Pl) Approaches

1.2.1. The Constrained Approach

The first latent variable approach to estimating interaction
effects between latent variables was presented by Kenny and
Judd (1984) and Marsh et al. (2013). In their paper, they pro-
posed a solution for estimating the interaction effect of latent
variables &, and &, onto an observed variable y. Such that

Y =718 + 728 + 7368 +C (D

Jaccard and Wan (1995) later replaced the observed vari-
able y with a latent variable 1, making it a fully latent vari-
able approach. This model is now widely referred to as the
elementary interaction model (EIM). The EIM is illustrated
in Figure 1

"The model originally only had two indicators per latent variable.
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In this model, there are two exogenous latent variables &,
and &,, including their interaction term &,&,, and a single
endogenous latent variable m, with a disturbance variable
(i.e., residual)  such that:

n="78& + 78 +7v:6& +C (2)

In the approach by Kenny and Judd (1984) and Jaccard
and Wan (1995), the product indicators for &;&, were com-
puted as all unique products between the indicators for &,
and &,. To make the model mathematically correct, Kenny
and Judd (1984) placed a large number of constraints
(many of which are nonlinear) in both the measurement
and structural model. As a consequence, implementing and
estimating the model was computationally demanding, tedi-
ous, and in general quite error prone.

Notably, the approach failed to take into account the mean
structure of the measurement and structural model. For
example, it is assumed that all of the latent exogenous varia-
bles have mean zero. This then implies that the covariance
between &; and &, is assumed to be zero since E[§,&,] =
o(&,,&,) if E[g,] = E[&,] = 0. Thus the model would only be
correctly specified if 6(&,,&,) = 0. If not, E[§,&,] is non-zero
- violating the assumption that all latent exogenous variables
variables have zero mean.

Joreskog and Yan (1996) proposed a revised model where
the mean structure for both the observed and latent variables



was taken into account. Thus, the structural model from
Equation (2) was revised to include an intercept for n such
that:

n=o+718& +78 +v:£& +C (3)

This approach led to a substantial improvement (Marsh
et al, 2013) over the original model by Kenny and Judd
(1984). However, the model would often not successfully
converge on a solution.

Shortly after, Algina and Moulder (2001) developed a
simplified version of the model in which they centered the
indicators before computing the indicator products. Setting
the means of indicators to zero before computing the prod-
uct indicators allowed them to remove the terms in the con-
straints that included the means of the indicators. This was
a substantial improvement to the model because it reduced
the number of constraints and made the model both more
robustly estimated and easier to implement.

This change to Equation (3) corresponds to a general lin-
ear model where &, and &, are centered before computing
the product term, such that:

N = (o= 1E[E] - 12E[&,] + v;E[E]E[E,])

+ (V1 = VE[EDE + (12 = 3E[E])E, + 138,18, + 8
(4)

Rearranging the equation in this way allows us to see
how the parameter estimates are affected by the centering of
the indicators [where & is the estimate for o in the model
by Algina and Moulder (2001), etc.]:

o — (u=7E[E] - vE[E] + v:E[§]E[,])
71— (11— 1:EE])

T2 — (2~ 1:EE))

Vs — s

Thus, the coefficient for the interaction term, vy;, remains
unchanged by centering, while only the intercept and the
simple main effects are affected. In this sense, both Joreskog
and Yang’s, and Algina and Moulder’s model should yield
the same estimates for the interaction effect, but may pro-
vide different estimates for the simple main effects, depend-
ing on the mean structure of &; and &,

While both the Joreskog and Yang model and Algina and
Moulder’s simplified version are known as the constrained
approach, it is generally agreed that Algina and Moulder’s
model is the better version of the two (Marsh et al., 2004).
This is partly due to the fact that the Algina and Moulder
model has less complicated constraints, but also because
centering the indicators reduces multicollinearity between
the product indicators and the other indicators in the
model. This is because the expected covariance between a
product of two normally distributed variables (independent
of their correlation) and the variables in the product is
expected to be zero, i.e.,

o(&y, (& — E[§])(& — E[E,]))
= o(&, (& - E[§])(& —E[E,))) = 0.

(5)

(6)
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1.2.2. The Unconstrained Approach

One of the main drawbacks of the constrained approach is
the difficulty in implementing a complex set of constraints,
which is often prohibitive for researchers who want to
examine interaction effects. Martin and Marsh (1999) took a
drastic approach to that problem and removed almost all of
the constraints from the constrained approach. Similarly to
Algina and Moulder (2001), Martin and Marsh (1999) cen-
tered their indicators before computing product indicators.
They then removed or changed almost all of the constraints
in the model proposed by Joreskog and Yan (1996), except
for constraining the mean of the latent product term to be
equal to the covariance among the latent variables in the
interaction, such that:

E[§,&,] = ¢n (7)

where ¢,; is the covariance between &, and &,.

In addition, they changed the constraints on the residual
covariances such that the residual covariances between the
product indicators with a common indicator are freely esti-
mated. Surprisingly, this model performed quite well despite
removing almost all of the constraints from the constrained
approach. It performed comparably to the constrained
approach in cases where normality assumptions were met
and even outperformed the constrained approach in cases
where the normality assumptions were violated (Marsh
et al., 2004).

1.2.3. The Residual Centering Approach

The residual centering approach (RCA) was introduced by
Little et al. (2006). Residual centering is a statistical tech-
nique used to remove shared variance from a set of varia-
bles while allowing each variable to retain its unique
variance (Lance, 1988). Assuming that the indicators are
normally distributed (and centered), the shared variance
between a product indicator and the indicators from which
it is computed should be zero (Lin et al., 2010).

However, in cases where the indicators are not normally
distributed, the shared variance between the product indica-
tor and the indicators from which it is computed is not
necessarily zero, even if the indicators are centered before-
hand. Given that the standard approach to creating product
indicators is to compute the product between all unique
pairs of indicators, a large number of product indicators
(N1 x N;) is used that can potentially lead to a large
amount of shared variance between the product indicators
and the indicators from which they are computed (Little
et al,, 2006). The residual centering method would therefore
be particularly effective in removing multicollinearity caused
by the product indicators, in cases where the indicators
from which they were computed are non-normally distrib-
uted (Geldhof et al., 2013).

The method works by computing indicator products with
uncentered indicators from the latent variables, which are
regressed on all of the indicators in the latent variables in
the product term, thereby removing the shared variance
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between the indicators in the product term and its corre-
sponding indicators. Since the residuals are centered at zero,
it also allows for the removal of the mean structure from
the model (i.e., removing E[§,&,] = ¢,1).

While the RCA does not seem to improve performance
in relatively simple cases (Lin et al., 2010), Geldhof et al.
(2013) presented a set of cases where the approach should
be seen as the favored alternative to more traditional
approaches. These cases include higher-order interactions
(e.g., interactions between three latent variables) and esti-
mating interaction effects where there is a high covariance
between the product indicators and the indicators from
which they were computed, where multicollinearity might
cause convergence issues in more traditional approaches.

That said, some researchers have raised concerns about
the method. For example, Lin et al. (2010) showed that in
cases where the indicators are skewed, there can be a mis-
match between residual centering on the indicator and the
latent level, introducing a non-random bias.

1.2.4. The Double Centering Approach

The double mean centering approach (DCA) was presented
by Lin et al. (2010), and was a further simplification of the
Unconstrained Approach (UCA), taking inspiration from
the removal of the mean structure in the RCA (Lin et al,
2010). In this approach, the indicators are centered before
and after computing the product indicators. The idea behind
this is to remove the mean structure from the model com-
pletely and to eliminate potential collinearities when the
indicators are non-normal (Lin et al., 2010).

As discussed above, Lin et al. (2010) showed that the
RCA led to a non-random bias in the estimates of the sim-
ple main effects in the model, a situation which the DCA
avoids. Therefore, while the two approaches both yield the
same estimate for the interaction effect, they do not neces-
sarily yield the same estimates for the simple main effects.

It can be shown (through some tedious calculations) that the
transformations of the simple main effects (and intercept) are
equivalent in both the DCA and the RCA (Lin et al., 2010),
when the indicators used in the product term are normally dis-
tributed. Thus, the approaches are equivalent in cases where
the indicators are normally distributed. In cases where the indi-
cators are skewed, Lin et al. (2010) demonstrated that the DCA
does not have the same inconsistency regarding the main
effects as the RCA, and should therefore be seen as the pre-
ferred alternative to the RCA.

1.3. The Distribution Analytic (DA) Approaches

In traditional maximum likelihood algorithms for SEM esti-
mation that are based on the sample covariance matrix, it is
usually assumed that the underlying latent variables are nor-
mally distributed. Klein and Moosbrugger (2000) however,
pointed out that this assumption is violated in interaction
models. Even in the case where &; and &, are normally dis-
tributed, their product &,&, is not—implying that 1 is non-
normal as well since it includes the product term as a linear

term. This leads to product indicator approaches underesti-
mating standard errors (Schumacker & Marcoulides, 1998),
an effect that is particularly pronounced for small sample
sizes.

Addressing this issue, Klein and Moosbrugger (2000)
developed the Latent Moderated Structural Equations (LMS)
approach, which explicitly takes into account the non-
normal distribution of the product term and #. Klein and
Moosbrugger (2000) only presented the equations for the
cases with a single endogenous variable, where the model
was given in matrix notation by:

n=a+T¢+8Q5+¢ (8)

where £ is a random vector of latent exogenous variables,
and Q is a matrix of coefficients for the interaction terms.
The LMS approach models the joint distribution of the indi-
cator vectors (x,y) as a finite mixture of normal densities.
This is achieved by decomposing & into two subvectors: & =
Az,z = (zl,zz), where z; represents latent exogenous varia-
bles with a non-linear effect on #, z, represents variables
with a linear effect, and A is the Cholesky decomposition of
the covariance matrix (®) between the latent exogenous var-
iables. The Cholesky decomposition of A allows us to model
z as a combination of p independent random variables
(where p is the number of latent exogenous variables),
which are transformed into correlated random variances
by A.

The method proceeds by substituting a finite set of values
for z; drawn from a discrete approximation of the normal
distribution, using Gaussian quadrature. At each point of
z1, the log likelihood of the model is computed by evaluat-
ing the likelihood of each observation of (x,y) given the
implied mean vector and covariance matrix, for the values
of z;. The probability of observing each value of z; is then
used as a mixing weight for generating the likelihood of
each observation, across all values of z;,. The estimation pro-
cedure is performed using the EM algorithm, where the
expectation step is executed by computing the likelihood of
each observation, given the current values of the estimated
parameters. These probabilities are then used to weight the
importance of each observation in the maximization step,
where the parameters are optimized to maximize the likeli-
hood of the model. These steps are repeated until the log
likelihood of the model converges onto a predefined criter-
ion (Klein & Moosbrugger, 2000). The LMS approach was
shown in the same paper to yield unbiased parameter esti-
mates and standard errors.

Subsequently, Klein and Muthén (2007) presented the
Quasi Maximum Likelihood (QML) approach, which took a
slightly different approach, transforming the joint indicator
vector such that only the first component of the vector
(where Ay = 1) was non-normal. The QML approach then
estimates the likelihood of the non-normal indicator by
using an approximation of the non-normal distribution of
y1, while the rest of the (transformed) indicators are mod-
eled as normally distributed variables. Klein and Muthén
(2007) showed that the QML approach yielded virtually
the same estimates as the LMS approach. When all the



normality assumptions of the LMS approach were met, it
performed slightly worse, and it performed slightly better
when those assumptions were violated. The main advantage
of the QML approach, however, is that it severely reduces
the computational complexity of the algorithm. The compu-
tational cost is particularly problematic in the LMS
approach when there are a large number of exogenous vari-
ables with non-linear effects, as the number of nodes in the
mixture model increases exponentially with the number of
exogenous variables (Klein & Moosbrugger, 2000; Klein &
Muthén, 2007).

While the LMS and QML approaches have shown prom-
ising results (Klein & Moosbrugger, 2000; Klein & Muthén,
2007), they have not been widely adopted by researchers.
This is likely due to the fact that the LMS approach has
only been implemented in Mplus, and the QML approach
was available only in a custom program (Klein & Muthén,
2007), which does not seem to be available any longer. One
of the main reasons for the absence of user-friendly imple-
mentations of these procedures is likely due to the fact that
the set of equations for both approaches was never actually
published in full. Rather, only a simplified version focusing
on a single endogenous variable was published. For example,
the nlsem package in R (Umbach et al., 2017) only allows
for the estimation of interaction effects in models with a
single endogenous variable due to the absence of reliable
documentation of the full set of equations (personal com-
munication with the author of nlsem).

In modsem, we have implemented extensions of both the
LMS and QML approaches, which allow for the estimation
of models with multiple endogenous variables and inter-
action effects with endogenous and exogenous latent varia-
bles. The equations for the extended LMS approach are
based on the equations given in Jin et al. (2020) and (Wall
& Amemiya, 2007). In their paper, Jin et al. (2020) pre-
sented an extended version of Equation (8), where they split
the equation into a system of recursive equations. We did
not adapt all of the equations from Jin et al. (2020) into
modsem, choosing a subset that is more easily adapted into
the LMS and QML approaches. In particular, we adapted
the equations that allow the estimation of models with mul-
tiple endogenous variables, and interaction effects between
endogenous and exogenous variables. To allow for inter-
action effects between endogenous variables, we used a sim-
pler approach based on general recommendations in Wall
and Amemiya (2007), which applies a simplified version of
the equations for linear SEM, based on Mulaik (2010).

Concretely, let k denote the number of endogenous varia-
bles, and 7 denote the number of exogenous variables in the
model, such that:

Nn=a+By+T¢+ (L @& QU+ (L EEqn+¢ (9

where B is a k x k matrix of coefficients relating endogen-
ous variables to each other, and Q and E are partitioned
matrices containing submatrices with interaction coefficients
for each random variable in 5 (Jin et al.,, 2020). In particu-
lar, Q is a kn x n matrix of coefficients for interaction
effects between exogenous variables, such that:

® ™

Q
Q,
Q= (10)
Qe
and Z is a kn x k matrix of coefficients for interaction

effects between exogenous and endogenous variables, such
that:

[

N

[1]
|

(11)

o o...

k

where I is the identity matrix of size k and A ® B denotes
the Kronecker product between A and B.
Let

-1

Cl=(-T-B-(L®&'5 (12)

such that  in Equation (9) can be expressed in reduced
form as:

n=Cla+T¢+ (L ®EQE+.

This equation allows for interaction effects between both
exogenous variables and between exogenous and endogen-
ous variables. It does, however, not allow for interaction
effects between endogenous variables—since the equation
could not easily be written in reduced form (Wall &
Amemiya, 2007). One alternative is to split the model into a
system of recursive equations (i.e., one equation can be sub-
stituted into the next) (Wall & Amemiya, 2007). Similarly to
Jin et al. (2020), we choose to split the model into two
equations. However, while Jin et al. (2020) split the model
into a system of recursive equations where both equations
contain interaction terms, we opted to split the model into
two equations (i.e., two submodels), where one equation
contains the interaction terms and the other does not (since
this is more easily adapted into the LMS and QML
approaches). To achieve this, we added a second equation
for € in Equation (13), such that:

Y =By +T¢+¢,

Here Y represents the endogenous variables of the sub-
model, while ¢ represents the exogenous variables. Where &
in Equation (13) is replaced with (¥, ¢) (Jin et al, 2020;
Mulaik, 2010; Wall & Amemiya, 2007). The covariance
matrix of the exogenous variables (®) used in the QML
approach, along with the Cholesky decomposition of @ (A),
can be replaced with the model-implied ® and A from
Equation (14). This replacement allows for the estimation of
interaction effects between endogenous variables as well,
provided they can be expressed in a linear model.

In modsem, this is achieved through an optional argu-
ment (cov.syntax) in the modsem function, which per-
mits the specification of an additional structural model
defining the relationship between the exogenous variables in
the model. Thus, if the interaction effect between two

(13)

(14)
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endogenous variables is to be estimated, where at least one
of the endogenous variables can be expressed as a linear
function of the exogenous variables, the model can be split
into two submodels. In the first submodel, the interaction
terms are included, and one of the endogenous variables is
treated as an exogenous variable. In the second submodel,
the functional relationship between the exogenous variables
and the endogenous variables is then specified. An example
can be found in the publicly available vignette.”

These extended equations for the LMS and QML
approaches are currently an experimental feature in mod-
sem. Initial tests have shown promising results when tested
on individual models, but further work evaluating this
method is needed.

1.4. Commercial Software for Estimating Interaction
Effects in SEMs

Since the introduction of interaction effects in SEMs, it has
become possible to estimate them using various statistical
software packages. For example, the Kenny and Judd model
was estimated using COSAN, while the Joreskog and Yang,
and the Aligna and Moulder models were estimated using
LISREL. See Schumacker (2002) for a guide on using dif-
ferent tools (LISREL, SIMPLIS, and PRELIS2) from the
LISREL software package to estimate interaction effects in
SEMs.

A key feature for estimating interaction effects using
product indicator (PI) approaches (in particular, different
versions of the CA) is the ability to specify and estimate
models with non-linear constraints. Estimating models with
non-linear constraints is currently possible in various soft-
ware packages (e.g, LISREL, lavaan, Mplus, and
others). Most of these packages, however, require users to
manually specify how the interaction effects are to be esti-
mated, such as defining product indicators and specifying
constraints.

One notable exception is Mplus, which implemented a
version of the Latent Moderated Structural Equations (LMS)
approach, starting with version 3.0 (Muthén & Muthén,
2004). The LMS approach does not require users to specify
product indicators or model constraints, making it easier to
specify interaction effects, especially in complex models.
Moreover, Mplus also allows the estimation of SEMs with
non-linear constraints, meaning it is possible to estimate
models using the CA. However, researchers still need to
manually define product indicators and constraints in those
cases.

Although B. Muthén presented the QML approach along-
side A. Klein (Klein & Muthén, 2007), it does not seem that
the QML approach has been implemented in Mplus, which
still uses the LMS approach (Muthén & Muthén, 2017).

While Mplus is highly flexible and user-friendly, it is
commercial software, which limits its accessibility to some
researchers. Furthermore, because the source code for
Mplus is not publicly available, it cannot modified, or

2https://modsemAorg/articles/interactionjwofetas.htmI

extended by other researchers. These limitations affect the
transparency of the software and, consequently, its overall
utility for the research community.

1.5. Packages in R

Currently, there are only two packages in R that assist with
investigating interaction effects between latent variables in
SEMs: semTools (Contributors, 2016) and nlsem
(Umbach et al., 2017).

1.5.1 semTools

The semTools package implements a specialized function
that allows users to create product indicators, which can
then be used in lavaan. semTools can compute product
indicators suitable for all of the mentioned PI approaches
(see Section 1.2). While helpful, the usefulness of this func-
tion is somewhat limited as it does not have the ability to
read the lavaan syntax for a model, automatically create
appropriate product indicators, or generate the necessary
constraints for the model. This is a problem, even for the
simpler approaches (e.g., the DCA), which still require the
user to specify the residual covariances between the product
indicators manually. This becomes particularly problematic
when the estimation of interaction effects using more com-
plicated approaches is desirable, where the constraints can
become quite complicated and tedious to specify.

1.5.2. NIsem

The nlsem package allows users to estimate interaction
effects using both the LMS and QML. While nlsem has
some support for converting a model specified using the
lavaan syntax to a model object suitable for the nlsem
package, it requires several extra steps from the user. For
example, the user needs to create a matrix that stores the
data in a pre-specified and rigid way (e.g., the columns
must be sorted in a specific order), as well as specifying the
starting values for the parameters in the model. By default,
the mean structure of the latent variables (&;, &,, m;) is
estimated freely, where the intercept for the first indicator
for each latent variable is set to zero. This is not the default
assumption made in the LMS and QML approach (Klein &
Moosbrugger, 2000; Klein & Muthén, 2007), where (along-
side other constraints) it is assumed that &, and &, have
zero mean. The nlsem package is implemented purely in R
(as opposed to a low-level language like C or C++), which
in turn makes the estimation process quite slow. Lastly, and
more importantly, the nlsem package only allows the user
to estimate interaction effects for models with a single
endogenous variable, making it unsuitable for a large set of
models.

1.6. The Need for Better and Freely Available Tools

While it is possible to estimate interaction effects in SEMs
using various tools, it can often be a tedious and error-
prone task. One exception is Mplus, having implemented a



version of the LMS approach. While it is quite easy to esti-
mate models with interaction effects in Mplus, if is also
closed-source and quite expensive — making it less accessible
to many researchers. Here, we present modsem, an open-
source and freely available R package, which implements
multiple approaches for estimating latent interaction effects.
modsem uses an extended version of the lavaan syntax
(Rosseel, 2012), which many R users are already familiar
with. Since modsem relies on lavaan for model specifica-
tion and fitting (in case of the PI approaches), the package
is easy to learn and compatible with many different types of
structural equation models. Furthermore, modsem does not
only support latent x latent interactions, but also
latent x observed and observed x observed interactions.
modsem automatically detects these interactions and han-
dles them appropriately.modsem supports the product indi-
cator-based approaches and also implements the LMS and
QML approaches. The product indicator-based approaches
are estimated using lavaan (Rosseel, 2012), whilst the
LMS and QML approaches are estimated using a custom
implementation. To make the estimation process more effi-
cient, the LMS and QML were partially implemented in
C++. Unlike the nlsem package, the QML and LMS
approaches in modsem are available for models with mul-
tiple endogenous variables, where interaction effects can be
estimated between both endogenous and exogenous latent
variables.

2. The modsem Package

To install modsem, the latest stable release can be directly
downloaded from the Comprehensive R Archive Network
(CRAN), or the latest development version can be installed
from GitHub as shown below.

# Install from CRAN
install.packages (“*modsem”)

# Install from GitHub

install.packages (“devtools”)
devtools::install_github(“kss2k/modsem”,
build_vignettes =TRUE)

In order to estimate a model with modsem, it must first
be specified using a modified version of the 1avaan syntax
(see the 1lavaan website’), where the * : * operator can be
used to denote an interaction (similarly to the syntax used
in the 1m() command). An SEM can be specified in lav-
aan through a simple set of equations, which are stored in
a string (i.e., a character vector with a single element).
Strings in R can be expressed using either single or double
quotes, but it is considered good practice to use single
quotes for lavaan models, as double quotes can be used
in the lavaan syntax. The outer/measurement model is
specified through the ‘=~ operator, where the left-hand
side (LHS) denotes the latent variable, and the right-hand
side (RHS) denotes the corresponding indicators. To make
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the model more readable, the '+’ operator can be used to
denote that multiple variables are part of the same
expression.

To specify the inner/structural model, the * * operator is
used, where the LHS denotes the dependent variable, and
the RHS denotes the independent variables. In the following
example, we add a new latent variable ‘Y’ to the model
and specify that it is a function of *X":

syntax < -
# Outer Model
X =~ x1+x2+x3
Y=~yl+y2+y3
# Inner model
Y~X

Similarly to the *= * operator, the *+’ operator can be
used to add extra variables to the expression. Adding a new
latent variable ‘*Z’ to the model, we can see an example
where 'Y’ is a function of both *X’ and ‘Z~’

syntax < -
# Outer Model
X =~ x1+x2 4+ x3
Y =~yl+y2+y3
Z =~ zl1l+4+z2+23
# Inner model
Y~X47Z

On top of this, there are multiple other operators (and
combinations of operators) which can be used to generate
more complicated models, such as the * * operator, which
is used for specifying the (co-)variances of the exogenous
variables in the model, as well as residual (co-)variances for
the endogenous and observed variables in the model
Furthermore, the **’ operator can be used to define labels
for the parameters in the model, which can be used to gen-
erate simple constraints. For more complicated constraints,
labels can be used in conjunction with mathematical expres-
sions specified using the *==*, * < ', ' > * operators.
A full explanation of these features is beyond this introduc-
tion, but can be found in the lavaan documentation on
CRAN* or on the lavaan website. One of the goals of
modsem is that the user should be able to specify their
model in as simple a manner as possible and thus avoid a
lot of these more complicated features.

In modsem, models can be specified using the modsem ()
function, where the syntax is specified as a string using the
lavaan syntax. The only difference is that an interaction
effect can be added using the ‘:‘ operator. Thus we can
modify our last example, where there now is an interaction
effect between ‘X' and ‘Z‘ (denoted by *X:Z*) on ‘Y

syntax < -
# Outer Model
X =~ x1+x2+x3

*https://lavaan.ugent.be/

*https://cran.r-project.org/web/packages/lavaan/index.html
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Y=~ vyl+y2+4+y3
Z =~zl1l4+22+2z3
# Inner model
Y~X+Z+X:Z

To estimate the model, you can use the modsem()
function, where the first argument is the syntax, the
second argument is the data, and the third is the method.
Thus the user only has to change the method argument if
they wish to change the approach used to estimate the
model. In addition to the mentioned approaches, modsem
can also estimate the model via Mplus, given that the user
has a version of Mplus installed on their computer.

# using default (double centering) approach
modsem (syntax, data=data)
# constrained approach

modsem (syntax, data=data, method = “ca”)
# unconstrained approach
modsem (syntax, data=data, method = “uca”)

# double centering approach
modsem (syntax, data=data, method = “dblcent”)
# residual centering approach

modsem (syntax, data=data, method = “rca”)
# LMS approach
modsem (syntax, data=data, method = “1ms”)

# QML approach

modsem (syntax, data=data, method = “gml”)
# Mplus

modsem (syntax, data=data, method = “mplus”)

Here, we present an example using the QML approach
on a simulated dataset (oneInt) included in the modsem
package. Using the summary () function, we can print a
summary of the models. For models estimated using one of
the PI approaches, the lavaan summary will be returned
(since they are estimated using lavaan). For the LMS and
QML approaches, modsem will return a similar output
inspired by the summary() function from lavaan. If
standardized =TRUE is specified in the summary ()
function, the package will print the standardized estimates
instead of the unstandardized estimates.

syntax < -
# Outer Model
X =~ x1+x2+4+x3
Y =~yl+y2+y3
Z =~zl1l4+22+2z3
# Inner model
Y~X+Z+X:Z

est_gml < - modsem(syntax, data=onelnt,
method = “gml”)

summary (est_aml, standardized=TRUE)

modsem (version 1.0.3):
Estimator
Optimization method

QML
NLMINB

Number of observations 2000
Number of iterations 116
Loglikelihood —-17496.22
Akaike (AIC) 35054.43
Bayesian (BIC) 35228.06
Fit Measures for HO:
Loglikelihood —-17832
Akaike (AIC) 35723.75
Bayesian (BIC) 35891.78
Chi-square 17.52
Degrees of Freedom (Chi square) 24
P value (Chi square) 0.826
RMSEA 0.000
Comparative fit to HO (no interaction
effect)
Loglikelihood change 335.66
Difference test (D) 671.32
Degrees of freedom (D) 1
P value (D) 0.000
R-Squared:
Y 0.607
R-Squared Null-Model (HO):
Y 0.395
R-Squared Change:
Y 0.211
Parameter Estimates:
Coefficients standardized
Information observed
Standard errors standard
Latent Variables:
Estimate Std.Error z.value P (> |z|)
X =~
x1 0.928
X2 0.892 0.014 63.96 0.000
X3 0.913 0.013 67.80 0.000
7 =~
z1 0.927
z2 0.899 0.014 65.12 0.000
z3 0.913 0.013 67.62 0.000
Y =~
vl 0.968
v2 0.953 0.009 107.57 0.000
v3 0.960 0.009 112.55 0.000
Regressions:
Estimate Std.Error z.value P (> |z|)
Y ~
X 0.432 0.021 20.94 0.000
VA 0.369 0.019 18.96 0.000
X:7Z 0.460 0.018 25.45 0.000
Covariances:
Estimate Std.Error z.value P(>|z|)
X~
Z 0.200 0.024 8.24 0.000
Variances:



Estimate Std.Error z.value P(> |z|)
x1 0.138 0.008 18.14 0.000
X2 0.204 0.009 23.19 0.000
X3 0.167 0.008 20.82 0.000
zl 0.140 0.008 18.34 0.000
z2 0.192 0.009 22.62 0.000
z3 0.167 0.008 20.71 0.000
vyl 0.062 0.003 17.98 0.000
y2 0.092 0.004 22.67 0.000
y3 0.078 0.004 20.71 0.000
X 1.000 0.037 26.99 0.000
Z 1.000 0.037 26.95 0.000
Y 0.393 0.016 24.87 0.000

modsem also offers some post-estimation tools. For
example, you can use the plot_interaction() func-
tion to visualize the interaction effects (see Figure 2). It is
similar to the margins and marginsplot commands in
STATA (StataCorp, 2023):

plot_interaction(x = “X”, z = “Z2",
xz = “X:2",
vals_z=c (-1, —=0.7), model =est_qgml)

y = “Y”,

In the modsem package, you can visualize the interaction
effects using the plot_interaction() function. The
parameters for this function are defined as follows:

x: The name of the variable on the x-axis.

z: The name of the moderating variable.

y: The name of the variable on the y-axis.

xz: The name of the interaction term.

vals_z: The values of z at which to plot the effect of
xony.

model: A model fitted using modsem.

0.5

0.0-

0.5+

) 0
X
Figure 2. Plot of the marginal effect of X on Y given Z, created using the plot_interaction () function.
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This function enables researchers to visualize how the
interaction between variables influences the dependent vari-
able, making it easier to interpret the results of the model.

3. Application to Real-Life Datasets

3.1. Application 1 (Interaction Effect): Theory of Planned
Behaviour

The Theory of Planned Behaviour (TPB) is a social psycho-
logical theory used to predict human behaviour. The theory
posits that behaviour is a function of intention, which in
turn is a function of attitude, subjective norm (SN), and per-
ceived behavioural control (PBC) (Ajzen, 1991). According
to Ajzen (1991), a “behavioral intention can find expression
in behavior only if the behavior in question is under vol-
itional control.” In other words, Ajzen (1991) specifies an
interaction effect where an individual’s PBC will moderate
the effect of their intentions on their behaviour, indicating
that a high PBC will increase the effect of intentions on
behaviour. The model is visualized in Figure 3

The data is taken from a UK sample, used in a replica-
tion study by Hagger et al. (2023). The data was collected at
two different timepoints, with each latent variable having
between 3 and 6 indicators, each specified as a 7-point
Likert scale. For simplicity, four indicators were selected for
each latent variable here (ignoring the differences in time-
point), resulting in each latent variable having 4 indicators
with high communalities (> 0.7). The lavaan syntax for
the model is as follows:

model < -
# Outer Model
2007)

(Based on Hagger et al.,

—_ 1

= -0.7
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PBC

Figure 3. Theory of Planned behaviour.

ATT =~ att3 +att2 +attl +att4
SN =~ sn4 +sn2 +sn3 +snl

PBC =~ pbc2 +pbcl +pbc3 +pbc4
INT =~ int2+intl+int3 +int4
BEH =~ beh3 4+ beh2 4+ behl 4+ behd

# Inner Model
2011)

# Causal Relationships

INT ~ATT + SN + PBC

BEH ~ INT + PBC

BEH~ INT: PBC

The models were estimated using the CA, UCA, RCA,
DCA, LMS, and QML approaches. For comparison, we also
estimated a model using Mplus (called through modsem).
The code used to estimate the models is as follows:

(Based on Steinmetz et al.,

est_ca <- modsem (model, data=TPB_UK, method

= “ca”)

est_uca <- modsem(model, data=TPB_UK, method
= “uca”)

est_dca <- modsem(model, data=TPB_UK, method
= “dblcent”)

est_rca <- modsem(model, data=TPB_UK, method
= “rca”)

est_1lms <- modsem(model, data=TPB_UK, method
="1lms”, nodes =100) # for increased precision
est_gml <- modsem(model, data=TPB UK, method
="“qml”)

est_mplus <- modsem (model, data=TPB_UK, method
= “mplus”)

The structural coefficients can be seen in Tables 1 and 2.
In general, the estimates for the interaction effect were quite
similar across the different approaches. The models using
QML and CA yielded an interaction effect (INT - PBC)
around 0.13, LMS and Mplus around 0.14, and UCA and
DCA around 0.15.

3.2. Application 2 (Quadratic Effect): Jordan Sample
from PISA 2006 Survey

This example was obtained from Umbach et al. (2017),
where the authors tested a model with two quadratic effects
and a single interaction effect, using a dataset included in

Table 1. Estimates from the Pl approaches using a UK sample for the TPB
model.

Approach Y X Estimate Std. error p value
CA INT ATT —0.093 0.029 .001
SN 0.039 0.034 .245

PBC 1.105 0.042 <.001

BEH INT 0.581 0.048 <.001

PBC 0.437 0.054 <.001

INT-PBC 0.132 0.006 <.001

UCA INT ATT —0.056 0.027 .039
SN 0.049 0.033 133

PBC 1.031 0.035 <.001

BEH INT 0.570 0.049 <.001

PBC 0.415 0.053 <.001

INT-PBC 0.147 0.009 <.001

DCA INT ATT —0.068 0.028 .015
SN 0.043 0.033 197

PBC 1.049 0.036 <.001

BEH INT 0.638 0.047 <.001

PBC 0.350 0.051 <.001

INT-PBC 0.150 0.011 <.001

RCA INT ATT —0.053 0.028 .054
SN 0.042 0.033 205

PBC 1.034 0.036 <.001

BEH INT 0.753 0.047 <.001

PBC 0.241 0.050 <.001

INT-PBC 0.153 0.011 <.001

Table 2. Estimates from the DA approaches using a UK sample for the TPB
model.

Approach Y X Estimate Std. error p value
LMS INT ATT —0.060 0.027 .027
SN 0.051 0.032 12

PBC 1.036 0.035 <.001

BEH PBC 0.404 0.050 <.001

INT 0.601 0.046 <.001

INT-PBC 0.140 0.005 <.001

QML INT ATT —0.051 0.030 .081
SN 0.047 0.033 150

PBC 1.027 0.036 <.001

BEH PBC 0.361 0.053 <.001

INT 0.629 0.048 <.001

INT-PBC 0.130 0.008 <.001

Mplus INT ATT —0.053 0.031 .089
SN —0.065 0.024 .008

PBC 1.090 0.036 <.001

BEH PBC 0.405 0.052 <.001

INT 0.588 0.048 <.001

INT-PBC 0.141 0.008 <.001

the nlsem package. The data originally stemmed from the
large-scale assessment study Program for International
Student Assessment (PISA) 2006 (Organisation for
Economic Co-Operation and Development, 2009), which
measured the reading, mathematics, and science proficiency
of 15-year-old students.

In their paper, Umbach et al. (2017) tested a model
where career (CAREER) aspirations were predicted by
enjoyment of science (ENJ) and academic self-concept in
science (SC), where the relationship between ENJ and
CAREER was moderated by SC. Furthermore, the model
included the quadratic effects of both ENJ and SC on
CAREER. The model can be seen in Figure 4.

The lavaan syntax for the model is as follows:

model <-"
# Measurement Model
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Figure 4. Model from Umbach et al. (2017).

ENJ =~ enjoyl +enjoy2 +enjoy3 +
enjoy4 +enjoyb
CAREER =~ careerl + career2 4+ career3 +
career4d
SC =~ academicl + academic2 + academic3+
academic4 + academich + academic6
# Structural Model

CAREER~ENJ + SC+ ENJ: ENJ + SC:SC+ ENJ: SC

The models were estimated using the CA, UCA, DCA,
RCA, LMS and QML approaches. As in the previous
example, we also estimated a model using Mplus, for com-
parison. The code used to estimate the models is as follows:

est_dca <- modsem(model, data=jordan)
est_ca <- modsem(model, data=jordan, method

— A\ Call )

est_uca <- modsem (model, data= jordan, method
— \\ucall )

est_rca <- modsem (model, data= jordan, method
p— \\rca” )

est_lms < - modsem (model, data= jordan, method
="“1lms”, nodes = 15) # actually 15 "2

est_agml <- modsem(model, data= jordan, method
= “qml”)

est_mplus <- modsem(model, data= jordan, method
= “mplus”)

The structural coefficients can be seen in Tables 3 and 4.
While the coefficients for the TPB model were relatively
similar across the different approaches, the results for the
PISA model gave drastically different outcomes depending
on the approach used. In general, the estimates using LMS,
QML, RCA, CA, and Mplus are quite similar, where both
the quadratic effects (ENJ*> and SC?) and the interaction
effect (ENJ - SC) are relatively small. Notably, only the quad-
ratic effect of ENJ was significant, when estimated using CA
and RCA. The UCA and DCA approaches, however, yielded
larger estimates for both the interaction effect and the quad-
ratic effects, where the coefficients were multiple times
larger than those estimated using the other approaches.

It is beyond the scope of the current paper to discuss
why the estimates differ so much between the different
approaches. However, it is worth noting that such discrep-
ancies become apparent only when using multiple
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Table 3. Estimates from the Pl approaches using a Jordan Sample from the
PISA-2006 survey.

Approach Y X Estimate Std. error p value
CA CAREER ENJ 0.537 0.019 <.001
e 0.420 0.022 <.001
sc? —0.005 0.026 839
ENJ? 0.054 0.016 .001
ENJ-SC —0.022 0.030 466
UCA CAREER ENJ 0.674 0.033 <.001
SC 0.444 0.030 <.001
sc? 0.046 0.022 038
ENJ? 0.167 0.025 <.001
ENJ-SC —0.140 0.041 001
RCA CAREER ENJ 0.521 0.019 <.001
SC 0.464 0.023 <.001
sc? 0.005 0.022 .806
ENJ? 0.041 0.017 018
ENJ-SC —0.017 0.038 659
DCA CAREER ENJ 0.674 0.033 <.001
SC 0.444 0.030 <.001
sc? 0.046 0.022 038
ENJ? 0.167 0.025 <.001
ENJ-SC —0.140 0.041 .001

Table 4. Estimates from the DA approaches using a Jordan sample from the
PISA-2006 survey.

Approach Y X Estimate Std. error p value
LMS CAREER ENJ 0.525 0.019 <.001
SC 0.464 0.023 <.001
sc? 0.002 0.034 942
ENJ? 0.026 0.024 278
ENJ-SC —0.049 0.047 290
QML CAREER ENJ 0.523 0.020 <.001
SC 0.467 0.024 <.001
sc? —0.002 0.037 958
ENJ? 0.026 0.022 236
ENJ-SC —0.039 0.048 A15
Mplus CAREER ENJ 0.524 0.020 <.001
SC 0.466 0.023 <.001
sc? 0.002 0.033 957
ENJ? 0.026 0.021 216
ENJ-SC —0.047 0.043 273

approaches on the same dataset, something that has not
been commonly done previously. As a consequence, the
modsem package offers exciting new opportunities to study
the effect of different estimation approaches in various con-
texts through large-scale simulation studies.

4, Conclusion

Estimating interaction and quadratic effects in SEMs typic-
ally requires specialized software or complex model specifi-
cations that are prone to error and misspecification. In this
paper, we introduce the R package modsem, designed to
facilitate the estimation of models with interaction and
quadratic effects using a modified version of the lavaan
syntax, which is familiar to many R users. The package sup-
ports multiple estimation methods, including the LMS and
QML approaches, alongside the more commonly used PI
approaches. Previously, the LMS and QML approaches were
limited to models with a single endogenous variable. To our
knowledge, Mplus is the only program that allows for
more complex models using a modified version of the LMS
approach as presented by Klein and Moosbrugger (2000),
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and no program has yet implemented an extended version
of the QML approach.

modsem addresses this gap by implementing extended
versions of both the LMS and QML approaches as experi-
mental features. While initial results are promising, further
validation and refinement are necessary to ensure their
robustness. Future work should focus on this validation pro-
cess and the exploration of alternative methods for estimat-
ing interaction effects in SEMs. For instance, Bayesian
approaches using Markov Chain Monte Carlo (MCMC)
have shown promising results (Marsh et al, 2013).
Additionally, recent developments by the lavaan team,
such as the planned implementation of latent interaction
estimation using a structural after measurement (SAM’)
(Rosseel & Loh, 2021), indicate exciting future directions for
the field.

*https://lavaan.ugent.be/about/donate.html
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