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ABSTRACT 
Estimating interaction and quadratic effects in structural equation models (SEMs) is complex. Latent 
product term (LPT) models, designed for interaction effects, also accommodate quadratic effects. After 
30 years of research, no consensus has emerged on the best modeling methods in SEMs, partly due to 
efforts to simplify approaches for accessibility. LPT models include product indicator (PI) and distribu
tion analytic (DA) approaches. While PI methods are simpler, they sacrifice accuracy and can be error 
prone. DA methods, like latent moderated structural equations (LMS) and Quasi maximum likelihood 
(QML), are more accurate but computationally intensive. We introduce modsem, an R package that 
simplifies these estimations and enhances accessibility.
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1. Introduction

The estimation of interaction and quadratic effects in 
Structural Equation Models (SEMs) has been an active 
research topic for many years. One approach for estimating 
these types of models in an SEM framework is using latent 
product term models (LPT). LPT models were originally 
developed for estimating interaction effects, i.e., product 
terms between latent variables (Kenny & Judd, 1984), but 
are also capable of estimating quadratic effects (Umbach 
et al., 2017), since a quadratic effect implies a product term 
of a variable with itself.

Although it has been over 30 years since the first LPT 
models for SEMs were presented, there is still a disagree
ment in the literature about the best way to estimate such 
models (Klein & Moosbrugger, 2000; Marsh et al., 2004, 
2013; Schumacker & Marcoulides, 1998). While the scarcity 
of research on the topic is one main reason for this continu
ing debate, there has also been a parallel development in 
terms of the priorities that the researchers have emphasized. 
On one side, emphasizing the pragmatic implementation of 
such models, methodological researchers have focused on 
simplifying existing approaches to make them more access
ible to applied researchers. On the other hand, more theor
etically oriented researchers have focused on developing 
more theoretically sound (but also generally more computa
tionally expensive and less accessible) approaches.

As a consequence, interaction effects are less frequently 
estimated when compared to linear models, even though 
they are often theorized to exist (Steinmetz et al., 2011). In 
summary, there is a lack of freely available statistical tools 
for estimating interaction effects in SEMs, which makes the 
approaches less accessible to applied researchers. The 

absence of such tools is also a significant barrier for studies 
comparing different approaches to estimating interaction 
effects in different contexts.

To bridge the existing gap between theoretically hypothe
sized and statistical models, there is a need for free user- 
friendly statistical tools implementing the most recent and 
theoretically sound approaches for estimating interaction 
effects in SEMs, that can be applied even without a deep 
understanding of the underlying statistical theory.

1.1. Different Approaches to Estimating LTP Models in 
SEMs

Over the years, a wide range of different approaches to estimat
ing interaction effects in SEMs have been recommended in the 
literature. These can be broadly divided into two categories:

1. Product Indicator (PI) Approaches
2. Distribution Analytic (DA) Approaches.

In general, the PI approaches were intended to be per
formed manually by the user and were estimated using tradi
tional estimation approaches based on the sample covariance 
matrix. These methods rely on implementing a set of con
straints on products of indicators in the larger SEM. Early 
implementations of that idea were particularly complicated 
and error prone to specify (J€oreskog & Yan, 1996; Kenny & 
Judd, 1984; Schumacker & Marcoulides, 1998). This led to a 
continuing trend of simplifying the approach to achieve mod
els that are more easily implemented without sacrificing 
model accuracy (Algina & Moulder, 2001; Lin et al., 2010; 
Little et al., 2006; Martin & Marsh, 1999).
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On the other hand, the parallel development of DA 
approaches, such as the Latent Moderated Structural 
Equations (LMS) (Klein & Moosbrugger, 2000) approach and 
the Quasi Maximum Likelihood (QML) (Klein & Muth�en, 
2007) approach, applied a different logic based on estimating 
the interaction effects from the distributional characteristics 
of the indicators for the endogenous variables.

1.2. Product Indicator (PI) Approaches

1.2.1. The Constrained Approach
The first latent variable approach to estimating interaction 
effects between latent variables was presented by Kenny and 
Judd (1984) and Marsh et al. (2013). In their paper, they pro
posed a solution for estimating the interaction effect of latent 
variables n1 and n2 onto an observed variable y. Such that

y ¼ c1n1 þ c2n2 þ c3n1n2 þ f (1) 

Jaccard and Wan (1995) later replaced the observed vari
able y with a latent variable g, making it a fully latent vari
able approach. This model is now widely referred to as the 
elementary interaction model (EIM). The EIM is illustrated 
in Figure 11.

In this model, there are two exogenous latent variables n1 
and n2, including their interaction term n1n2, and a single 
endogenous latent variable g, with a disturbance variable 
(i.e., residual) f such that:

g ¼ c1n1 þ c2n2 þ c3n1n2 þ f: (2) 

In the approach by Kenny and Judd (1984) and Jaccard 
and Wan (1995), the product indicators for n1n2 were com
puted as all unique products between the indicators for n1 
and n2: To make the model mathematically correct, Kenny 
and Judd (1984) placed a large number of constraints 
(many of which are nonlinear) in both the measurement 
and structural model. As a consequence, implementing and 
estimating the model was computationally demanding, tedi
ous, and in general quite error prone.

Notably, the approach failed to take into account the mean 
structure of the measurement and structural model. For 
example, it is assumed that all of the latent exogenous varia
bles have mean zero. This then implies that the covariance 
between n1 and n2 is assumed to be zero since E½n1n2� ¼

rðn1, n2Þ if E½n1� ¼ E½n2� ¼ 0: Thus the model would only be 
correctly specified if rðn1, n2Þ ¼ 0: If not, E½n1n2� is non-zero 
– violating the assumption that all latent exogenous variables 
variables have zero mean.

J€oreskog and Yan (1996) proposed a revised model where 
the mean structure for both the observed and latent variables 

Figure 1. Elementary interaction model.

1The model originally only had two indicators per latent variable.
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was taken into account. Thus, the structural model from 
Equation (2) was revised to include an intercept for g such 
that:

g ¼ aþ c1n1 þ c2n2 þ c3n1n2 þ f: (3) 

This approach led to a substantial improvement (Marsh 
et al., 2013) over the original model by Kenny and Judd 
(1984). However, the model would often not successfully 
converge on a solution.

Shortly after, Algina and Moulder (2001) developed a 
simplified version of the model in which they centered the 
indicators before computing the indicator products. Setting 
the means of indicators to zero before computing the prod
uct indicators allowed them to remove the terms in the con
straints that included the means of the indicators. This was 
a substantial improvement to the model because it reduced 
the number of constraints and made the model both more 
robustly estimated and easier to implement.

This change to Equation (3) corresponds to a general lin
ear model where n1 and n2 are centered before computing 
the product term, such that:

g ¼ a − c1E n1½ � − c2E n2½ � þ c3E n1½ �E n2½ �ð Þ

þ c1 − c3E n1½ �ð Þn1 þ c2 − c3E n2½ �ð Þn2 þ c3n1n2 þ f

(4) 

Rearranging the equation in this way allows us to see 
how the parameter estimates are affected by the centering of 
the indicators [where â is the estimate for a in the model 
by Algina and Moulder (2001), etc.]: 

â ! a − c1E n1½ � − c2E n2½ � þ c3E n1½ �E n2½ �ð Þ

ĉ1 ! c1 − c3E n1½ �ð Þ

ĉ2 ! c2 − c3E n2½ �ð Þ

ĉ3 ! c3

(5) 

Thus, the coefficient for the interaction term, c3, remains 
unchanged by centering, while only the intercept and the 
simple main effects are affected. In this sense, both J€oreskog 
and Yang’s, and Algina and Moulder’s model should yield 
the same estimates for the interaction effect, but may pro
vide different estimates for the simple main effects, depend
ing on the mean structure of n1 and n2

While both the J€oreskog and Yang model and Algina and 
Moulder’s simplified version are known as the constrained 
approach, it is generally agreed that Algina and Moulder’s 
model is the better version of the two (Marsh et al., 2004). 
This is partly due to the fact that the Algina and Moulder 
model has less complicated constraints, but also because 
centering the indicators reduces multicollinearity between 
the product indicators and the other indicators in the 
model. This is because the expected covariance between a 
product of two normally distributed variables (independent 
of their correlation) and the variables in the product is 
expected to be zero, i.e.,

rðn1, ðn1 − E n1½ �Þðn2 − E n2½ �ÞÞ

¼ rðn2, ðn1 − E n1½ �Þðn2 − E n2½ �ÞÞ ¼ 0:
(6) 

1.2.2. The Unconstrained Approach
One of the main drawbacks of the constrained approach is 
the difficulty in implementing a complex set of constraints, 
which is often prohibitive for researchers who want to 
examine interaction effects. Martin and Marsh (1999) took a 
drastic approach to that problem and removed almost all of 
the constraints from the constrained approach. Similarly to 
Algina and Moulder (2001), Martin and Marsh (1999) cen
tered their indicators before computing product indicators. 
They then removed or changed almost all of the constraints 
in the model proposed by J€oreskog and Yan (1996), except 
for constraining the mean of the latent product term to be 
equal to the covariance among the latent variables in the 
interaction, such that:

E n1n2½ � ¼ /21 (7) 

where /21 is the covariance between n1 and n2:

In addition, they changed the constraints on the residual 
covariances such that the residual covariances between the 
product indicators with a common indicator are freely esti
mated. Surprisingly, this model performed quite well despite 
removing almost all of the constraints from the constrained 
approach. It performed comparably to the constrained 
approach in cases where normality assumptions were met 
and even outperformed the constrained approach in cases 
where the normality assumptions were violated (Marsh 
et al., 2004).

1.2.3. The Residual Centering Approach
The residual centering approach (RCA) was introduced by 
Little et al. (2006). Residual centering is a statistical tech
nique used to remove shared variance from a set of varia
bles while allowing each variable to retain its unique 
variance (Lance, 1988). Assuming that the indicators are 
normally distributed (and centered), the shared variance 
between a product indicator and the indicators from which 
it is computed should be zero (Lin et al., 2010).

However, in cases where the indicators are not normally 
distributed, the shared variance between the product indica
tor and the indicators from which it is computed is not 
necessarily zero, even if the indicators are centered before
hand. Given that the standard approach to creating product 
indicators is to compute the product between all unique 
pairs of indicators, a large number of product indicators 
(N1 � N2) is used that can potentially lead to a large 
amount of shared variance between the product indicators 
and the indicators from which they are computed (Little 
et al., 2006). The residual centering method would therefore 
be particularly effective in removing multicollinearity caused 
by the product indicators, in cases where the indicators 
from which they were computed are non-normally distrib
uted (Geldhof et al., 2013).

The method works by computing indicator products with 
uncentered indicators from the latent variables, which are 
regressed on all of the indicators in the latent variables in 
the product term, thereby removing the shared variance 
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between the indicators in the product term and its corre
sponding indicators. Since the residuals are centered at zero, 
it also allows for the removal of the mean structure from 
the model (i.e., removing E½n1n2� ¼ /21).

While the RCA does not seem to improve performance 
in relatively simple cases (Lin et al., 2010), Geldhof et al. 
(2013) presented a set of cases where the approach should 
be seen as the favored alternative to more traditional 
approaches. These cases include higher-order interactions 
(e.g., interactions between three latent variables) and esti
mating interaction effects where there is a high covariance 
between the product indicators and the indicators from 
which they were computed, where multicollinearity might 
cause convergence issues in more traditional approaches.

That said, some researchers have raised concerns about 
the method. For example, Lin et al. (2010) showed that in 
cases where the indicators are skewed, there can be a mis
match between residual centering on the indicator and the 
latent level, introducing a non-random bias.

1.2.4. The Double Centering Approach
The double mean centering approach (DCA) was presented 
by Lin et al. (2010), and was a further simplification of the 
Unconstrained Approach (UCA), taking inspiration from 
the removal of the mean structure in the RCA (Lin et al., 
2010). In this approach, the indicators are centered before 
and after computing the product indicators. The idea behind 
this is to remove the mean structure from the model com
pletely and to eliminate potential collinearities when the 
indicators are non-normal (Lin et al., 2010).

As discussed above, Lin et al. (2010) showed that the 
RCA led to a non-random bias in the estimates of the sim
ple main effects in the model, a situation which the DCA 
avoids. Therefore, while the two approaches both yield the 
same estimate for the interaction effect, they do not neces
sarily yield the same estimates for the simple main effects.

It can be shown (through some tedious calculations) that the 
transformations of the simple main effects (and intercept) are 
equivalent in both the DCA and the RCA (Lin et al., 2010), 
when the indicators used in the product term are normally dis
tributed. Thus, the approaches are equivalent in cases where 
the indicators are normally distributed. In cases where the indi
cators are skewed, Lin et al. (2010) demonstrated that the DCA 
does not have the same inconsistency regarding the main 
effects as the RCA, and should therefore be seen as the pre
ferred alternative to the RCA.

1.3. The Distribution Analytic (DA) Approaches

In traditional maximum likelihood algorithms for SEM esti
mation that are based on the sample covariance matrix, it is 
usually assumed that the underlying latent variables are nor
mally distributed. Klein and Moosbrugger (2000) however, 
pointed out that this assumption is violated in interaction 
models. Even in the case where n1 and n2 are normally dis
tributed, their product n1n2 is not—implying that g is non- 
normal as well since it includes the product term as a linear 

term. This leads to product indicator approaches underesti
mating standard errors (Schumacker & Marcoulides, 1998), 
an effect that is particularly pronounced for small sample 
sizes.

Addressing this issue, Klein and Moosbrugger (2000) 
developed the Latent Moderated Structural Equations (LMS) 
approach, which explicitly takes into account the non- 
normal distribution of the product term and g: Klein and 
Moosbrugger (2000) only presented the equations for the 
cases with a single endogenous variable, where the model 
was given in matrix notation by:

g ¼ aþ Cnþ n0Xnþ f (8) 

where n is a random vector of latent exogenous variables, 
and X is a matrix of coefficients for the interaction terms. 
The LMS approach models the joint distribution of the indi
cator vectors ðx, yÞ as a finite mixture of normal densities. 
This is achieved by decomposing n into two subvectors: n ¼
Az, z ¼ ðz1, z2Þ, where z1 represents latent exogenous varia
bles with a non-linear effect on g, z2 represents variables 
with a linear effect, and A is the Cholesky decomposition of 
the covariance matrix (U) between the latent exogenous var
iables. The Cholesky decomposition of A allows us to model 
z as a combination of p independent random variables 
(where p is the number of latent exogenous variables), 
which are transformed into correlated random variances 
by A:

The method proceeds by substituting a finite set of values 
for z1 drawn from a discrete approximation of the normal 
distribution, using Gaussian quadrature. At each point of 
z1, the log likelihood of the model is computed by evaluat
ing the likelihood of each observation of ðx, yÞ given the 
implied mean vector and covariance matrix, for the values 
of z1: The probability of observing each value of z1 is then 
used as a mixing weight for generating the likelihood of 
each observation, across all values of z1: The estimation pro
cedure is performed using the EM algorithm, where the 
expectation step is executed by computing the likelihood of 
each observation, given the current values of the estimated 
parameters. These probabilities are then used to weight the 
importance of each observation in the maximization step, 
where the parameters are optimized to maximize the likeli
hood of the model. These steps are repeated until the log 
likelihood of the model converges onto a predefined criter
ion (Klein & Moosbrugger, 2000). The LMS approach was 
shown in the same paper to yield unbiased parameter esti
mates and standard errors.

Subsequently, Klein and Muth�en (2007) presented the 
Quasi Maximum Likelihood (QML) approach, which took a 
slightly different approach, transforming the joint indicator 
vector such that only the first component of the vector 
(where k1 ¼ 1) was non-normal. The QML approach then 
estimates the likelihood of the non-normal indicator by 
using an approximation of the non-normal distribution of 
y1, while the rest of the (transformed) indicators are mod
eled as normally distributed variables. Klein and Muth�en 
(2007) showed that the QML approach yielded virtually 
the same estimates as the LMS approach. When all the 
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normality assumptions of the LMS approach were met, it 
performed slightly worse, and it performed slightly better 
when those assumptions were violated. The main advantage 
of the QML approach, however, is that it severely reduces 
the computational complexity of the algorithm. The compu
tational cost is particularly problematic in the LMS 
approach when there are a large number of exogenous vari
ables with non-linear effects, as the number of nodes in the 
mixture model increases exponentially with the number of 
exogenous variables (Klein & Moosbrugger, 2000; Klein & 
Muth�en, 2007).

While the LMS and QML approaches have shown prom
ising results (Klein & Moosbrugger, 2000; Klein & Muth�en, 
2007), they have not been widely adopted by researchers. 
This is likely due to the fact that the LMS approach has 
only been implemented in Mplus, and the QML approach 
was available only in a custom program (Klein & Muth�en, 
2007), which does not seem to be available any longer. One 
of the main reasons for the absence of user-friendly imple
mentations of these procedures is likely due to the fact that 
the set of equations for both approaches was never actually 
published in full. Rather, only a simplified version focusing 
on a single endogenous variable was published. For example, 
the nlsem package in R (Umbach et al., 2017) only allows 
for the estimation of interaction effects in models with a 
single endogenous variable due to the absence of reliable 
documentation of the full set of equations (personal com
munication with the author of nlsem).

In modsem, we have implemented extensions of both the 
LMS and QML approaches, which allow for the estimation 
of models with multiple endogenous variables and inter
action effects with endogenous and exogenous latent varia
bles. The equations for the extended LMS approach are 
based on the equations given in Jin et al. (2020) and (Wall 
& Amemiya, 2007). In their paper, Jin et al. (2020) pre
sented an extended version of Equation (8), where they split 
the equation into a system of recursive equations. We did 
not adapt all of the equations from Jin et al. (2020) into 
modsem, choosing a subset that is more easily adapted into 
the LMS and QML approaches. In particular, we adapted 
the equations that allow the estimation of models with mul
tiple endogenous variables, and interaction effects between 
endogenous and exogenous variables. To allow for inter
action effects between endogenous variables, we used a sim
pler approach based on general recommendations in Wall 
and Amemiya (2007), which applies a simplified version of 
the equations for linear SEM, based on Mulaik (2010).

Concretely, let k denote the number of endogenous varia
bles, and n denote the number of exogenous variables in the 
model, such that:

g ¼ aþ Bgþ Cnþ Ik � nð Þ
0
Xnþ Ik � nð Þ

0
Ngþ f (9) 

where B is a k� k matrix of coefficients relating endogen
ous variables to each other, and X and N are partitioned 
matrices containing submatrices with interaction coefficients 
for each random variable in g (Jin et al., 2020). In particu
lar, X is a kn� n matrix of coefficients for interaction 
effects between exogenous variables, such that:

X ¼

X1

X2

..

.

Xk

0

B
B
B
B
B
@

1

C
C
C
C
C
A

(10) 

and N is a kn� k matrix of coefficients for interaction 
effects between exogenous and endogenous variables, such 
that:

N ¼

N1

N2

..

.

Nk

0

B
B
B
B
B
@

1

C
C
C
C
C
A

(11) 

where Ik is the identity matrix of size k and A� B denotes 
the Kronecker product between A and B.

Let

C−1 ¼ Ik − C − B − Ik � nð Þ
0
N

� � −1 (12) 

such that g in Equation (9) can be expressed in reduced 
form as:

g ¼ C−1 aþ Cnþ Ik � nð Þ
0
Xnþ f

� �
: (13) 

This equation allows for interaction effects between both 
exogenous variables and between exogenous and endogen
ous variables. It does, however, not allow for interaction 
effects between endogenous variables—since the equation 
could not easily be written in reduced form (Wall & 
Amemiya, 2007). One alternative is to split the model into a 
system of recursive equations (i.e., one equation can be sub
stituted into the next) (Wall & Amemiya, 2007). Similarly to 
Jin et al. (2020), we choose to split the model into two 
equations. However, while Jin et al. (2020) split the model 
into a system of recursive equations where both equations 
contain interaction terms, we opted to split the model into 
two equations (i.e., two submodels), where one equation 
contains the interaction terms and the other does not (since 
this is more easily adapted into the LMS and QML 
approaches). To achieve this, we added a second equation 
for n in Equation (13), such that:

w ¼ Bwþ C/þ fw (14) 

Here w represents the endogenous variables of the sub
model, while / represents the exogenous variables. Where n 

in Equation (13) is replaced with ðw, /Þ (Jin et al., 2020; 
Mulaik, 2010; Wall & Amemiya, 2007). The covariance 
matrix of the exogenous variables (U) used in the QML 
approach, along with the Cholesky decomposition of U (A), 
can be replaced with the model-implied U and A from 
Equation (14). This replacement allows for the estimation of 
interaction effects between endogenous variables as well, 
provided they can be expressed in a linear model.

In modsem, this is achieved through an optional argu
ment (cov.syntax) in the modsem function, which per
mits the specification of an additional structural model 
defining the relationship between the exogenous variables in 
the model. Thus, if the interaction effect between two 
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endogenous variables is to be estimated, where at least one 
of the endogenous variables can be expressed as a linear 
function of the exogenous variables, the model can be split 
into two submodels. In the first submodel, the interaction 
terms are included, and one of the endogenous variables is 
treated as an exogenous variable. In the second submodel, 
the functional relationship between the exogenous variables 
and the endogenous variables is then specified. An example 
can be found in the publicly available vignette.2

These extended equations for the LMS and QML 
approaches are currently an experimental feature in mod
sem. Initial tests have shown promising results when tested 
on individual models, but further work evaluating this 
method is needed.

1.4. Commercial Software for Estimating Interaction 
Effects in SEMs

Since the introduction of interaction effects in SEMs, it has 
become possible to estimate them using various statistical 
software packages. For example, the Kenny and Judd model 
was estimated using COSAN, while the J€oreskog and Yang, 
and the Aligna and Moulder models were estimated using 
LISREL. See Schumacker (2002) for a guide on using dif
ferent tools (LISREL, SIMPLIS, and PRELIS2) from the 
LISREL software package to estimate interaction effects in 
SEMs.

A key feature for estimating interaction effects using 
product indicator (PI) approaches (in particular, different 
versions of the CA) is the ability to specify and estimate 
models with non-linear constraints. Estimating models with 
non-linear constraints is currently possible in various soft
ware packages (e.g., LISREL, lavaan, Mplus, and 
others). Most of these packages, however, require users to 
manually specify how the interaction effects are to be esti
mated, such as defining product indicators and specifying 
constraints.

One notable exception is Mplus, which implemented a 
version of the Latent Moderated Structural Equations (LMS) 
approach, starting with version 3.0 (Muth�en & Muth�en, 
2004). The LMS approach does not require users to specify 
product indicators or model constraints, making it easier to 
specify interaction effects, especially in complex models. 
Moreover, Mplus also allows the estimation of SEMs with 
non-linear constraints, meaning it is possible to estimate 
models using the CA. However, researchers still need to 
manually define product indicators and constraints in those 
cases.

Although B. Muth�en presented the QML approach along
side A. Klein (Klein & Muth�en, 2007), it does not seem that 
the QML approach has been implemented in Mplus, which 
still uses the LMS approach (Muth�en & Muth�en, 2017).

While Mplus is highly flexible and user-friendly, it is 
commercial software, which limits its accessibility to some 
researchers. Furthermore, because the source code for 
Mplus is not publicly available, it cannot modified, or 

extended by other researchers. These limitations affect the 
transparency of the software and, consequently, its overall 
utility for the research community.

1.5. Packages in R

Currently, there are only two packages in R that assist with 
investigating interaction effects between latent variables in 
SEMs: semTools (Contributors, 2016) and nlsem 

(Umbach et al., 2017).

1.5.1 semTools
The semTools package implements a specialized function 
that allows users to create product indicators, which can 
then be used in lavaan. semTools can compute product 
indicators suitable for all of the mentioned PI approaches 
(see Section 1.2). While helpful, the usefulness of this func
tion is somewhat limited as it does not have the ability to 
read the lavaan syntax for a model, automatically create 
appropriate product indicators, or generate the necessary 
constraints for the model. This is a problem, even for the 
simpler approaches (e.g., the DCA), which still require the 
user to specify the residual covariances between the product 
indicators manually. This becomes particularly problematic 
when the estimation of interaction effects using more com
plicated approaches is desirable, where the constraints can 
become quite complicated and tedious to specify.

1.5.2. Nlsem
The nlsem package allows users to estimate interaction 
effects using both the LMS and QML. While nlsem has 
some support for converting a model specified using the 
lavaan syntax to a model object suitable for the nlsem 
package, it requires several extra steps from the user. For 
example, the user needs to create a matrix that stores the 
data in a pre-specified and rigid way (e.g., the columns 
must be sorted in a specific order), as well as specifying the 
starting values for the parameters in the model. By default, 
the mean structure of the latent variables (n1, n2, g1) is 
estimated freely, where the intercept for the first indicator 
for each latent variable is set to zero. This is not the default 
assumption made in the LMS and QML approach (Klein & 
Moosbrugger, 2000; Klein & Muth�en, 2007), where (along
side other constraints) it is assumed that n1 and n2 have 
zero mean. The nlsem package is implemented purely in R 
(as opposed to a low-level language like C or Cþþ), which 
in turn makes the estimation process quite slow. Lastly, and 
more importantly, the nlsem package only allows the user 
to estimate interaction effects for models with a single 
endogenous variable, making it unsuitable for a large set of 
models.

1.6. The Need for Better and Freely Available Tools

While it is possible to estimate interaction effects in SEMs 
using various tools, it can often be a tedious and error- 
prone task. One exception is Mplus, having implemented a 2https://modsem.org/articles/interaction_two_etas.html
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version of the LMS approach. While it is quite easy to esti
mate models with interaction effects in Mplus, if is also 
closed-source and quite expensive – making it less accessible 
to many researchers. Here, we present modsem, an open- 
source and freely available R package, which implements 
multiple approaches for estimating latent interaction effects. 
modsem uses an extended version of the lavaan syntax 
(Rosseel, 2012), which many R users are already familiar 
with. Since modsem relies on lavaan for model specifica
tion and fitting (in case of the PI approaches), the package 
is easy to learn and compatible with many different types of 
structural equation models. Furthermore, modsem does not 
only support latent � latent interactions, but also 
latent � observed and observed � observed interactions. 
modsem automatically detects these interactions and han
dles them appropriately.modsem supports the product indi
cator-based approaches and also implements the LMS and 
QML approaches. The product indicator-based approaches 
are estimated using lavaan (Rosseel, 2012), whilst the 
LMS and QML approaches are estimated using a custom 
implementation. To make the estimation process more effi
cient, the LMS and QML were partially implemented in 
Cþþ. Unlike the nlsem package, the QML and LMS 
approaches in modsem are available for models with mul
tiple endogenous variables, where interaction effects can be 
estimated between both endogenous and exogenous latent 
variables.

2. The modsem Package

To install modsem, the latest stable release can be directly 
downloaded from the Comprehensive R Archive Network 
(CRAN), or the latest development version can be installed 
from GitHub as shown below.

# Install from CRAN
install.packages(“modsem”)

# Install from GitHub
install.packages(“devtools”)

devtools::install_github(“kss2k/modsem”,  

build_vignettes¼TRUE)

In order to estimate a model with modsem, it must first 
be specified using a modified version of the lavaan syntax 
(see the lavaan website3), where the ‘:‘ operator can be 
used to denote an interaction (similarly to the syntax used 
in the lm() command). An SEM can be specified in lav
aan through a simple set of equations, which are stored in 
a string (i.e., a character vector with a single element). 
Strings in R can be expressed using either single or double 
quotes, but it is considered good practice to use single 
quotes for lavaan models, as double quotes can be used 
in the lavaan syntax. The outer/measurement model is 
specified through the ‘¼�‘ operator, where the left-hand 
side (LHS) denotes the latent variable, and the right-hand 
side (RHS) denotes the corresponding indicators. To make 

the model more readable, the ‘þ’ operator can be used to 
denote that multiple variables are part of the same 
expression.

To specify the inner/structural model, the ‘ ‘ operator is 
used, where the LHS denotes the dependent variable, and 
the RHS denotes the independent variables. In the following 
example, we add a new latent variable ‘Y’ to the model 
and specify that it is a function of ‘X’:

syntax < - ‘

# Outer Model
X ¼� x1þx2þx3

Y ¼� y1þy2þy3

# Inner model
Y�X

‘

Similarly to the ‘¼ ‘ operator, the ‘þ’ operator can be 
used to add extra variables to the expression. Adding a new 
latent variable ‘Z’ to the model, we can see an example 
where ‘Y’ is a function of both ‘X’ and ‘Z’

syntax < - ‘

# Outer Model
X ¼� x1þx2þx3

Y ¼� y1þy2þy3

Z ¼� z1þz2þz3

# Inner model
Y�XþZ

‘

On top of this, there are multiple other operators (and 
combinations of operators) which can be used to generate 
more complicated models, such as the ‘ ‘ operator, which 
is used for specifying the (co-)variances of the exogenous 
variables in the model, as well as residual (co-)variances for 
the endogenous and observed variables in the model. 
Furthermore, the ‘�’ operator can be used to define labels 
for the parameters in the model, which can be used to gen
erate simple constraints. For more complicated constraints, 
labels can be used in conjunction with mathematical expres
sions specified using the ‘¼¼‘, ‘ < ‘, ‘ > ‘ operators. 
A full explanation of these features is beyond this introduc
tion, but can be found in the lavaan documentation on 
CRAN4 or on the lavaan website. One of the goals of 
modsem is that the user should be able to specify their 
model in as simple a manner as possible and thus avoid a 
lot of these more complicated features.

In modsem, models can be specified using the modsem() 
function, where the syntax is specified as a string using the 
lavaan syntax. The only difference is that an interaction 
effect can be added using the ‘:‘ operator. Thus we can 
modify our last example, where there now is an interaction 
effect between ‘X‘ and ‘Z‘ (denoted by ‘X:Z‘) on ‘Y‘

syntax < - ‘

# Outer Model
X ¼� x1þx2þx3

3https://lavaan.ugent.be/ 4https://cran.r-project.org/web/packages/lavaan/index.html
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Y ¼� y1þy2þy3

Z ¼� z1þz2þz3

# Inner model
Y�XþZþX:Z

‘

To estimate the model, you can use the modsem() 
function, where the first argument is the syntax, the 
second argument is the data, and the third is the method. 
Thus the user only has to change the method argument if 
they wish to change the approach used to estimate the 
model. In addition to the mentioned approaches, modsem 
can also estimate the model via Mplus, given that the user 
has a version of Mplus installed on their computer.

# using default (double centering) approach  
modsem(syntax, data¼data)

# constrained approach  
modsem(syntax, data¼data, method ¼ “ca”)

# unconstrained approach  
modsem(syntax, data¼data, method ¼ “uca”)

# double centering approach  
modsem(syntax, data¼data, method ¼ “dblcent”)

# residual centering approach  
modsem(syntax, data¼data, method ¼ “rca”)

# LMS approach  
modsem(syntax, data¼data, method ¼ “lms”)

# QML approach  
modsem(syntax, data¼data, method ¼ “qml”)

# Mplus  
modsem(syntax, data¼data, method ¼ “mplus”)

Here, we present an example using the QML approach 
on a simulated dataset (oneInt) included in the modsem 
package. Using the summary() function, we can print a 
summary of the models. For models estimated using one of 
the PI approaches, the lavaan summary will be returned 
(since they are estimated using lavaan). For the LMS and 
QML approaches, modsem will return a similar output 
inspired by the summary() function from lavaan. If 
standardized¼TRUE is specified in the summary() 
function, the package will print the standardized estimates 
instead of the unstandardized estimates.

syntax < - ‘

# Outer Model
X ¼� x1þx2þx3

Y ¼� y1þy2þy3

Z ¼� z1þz2þz3

# Inner model
Y�XþZþX:Z

‘

est_qml < - modsem(syntax, data¼oneInt, 

method ¼ “qml”)

summary(est_qml, standardized¼TRUE)

modsem (version 1.0.3):

Estimator                                                  QML

Optimization method                           NLMINB

Number of observations                           2000

Number of iterations                               116

Loglikelihood                               −17496.22
Akaike (AIC)                                    35054.43

Bayesian (BIC)                                35228.06

Fit Measures for H0:

Loglikelihood                                     −17832
Akaike (AIC)                                    35723.75

Bayesian (BIC)                                35891.78

Chi-square                                             17.52

Degrees of Freedom (Chi square)               24

P value (Chi square)                             0.826

RMSEA                                                      0.000

Comparative fit to H0 (no interaction 

effect)

Loglikelihood change                         335.66

Difference test (D)                            671.32

Degrees of freedom (D)                                1

P value (D)                                            0.000

R-Squared:

Y                                                             0.607

R-Squared Null-Model (H0):

Y                                                             0.395

R-Squared Change:

Y                                                             0.211

Parameter Estimates:

Coefficients                            standardized

Information                                     observed

Standard errors                              standard

Latent Variables:

Estimate Std.Error z.value P(> jzj)

X ¼�

x1                                                    0.928                                                    

�2        0.892        0.014         63.96        0.000

�3        0.913        0.013         67.80        0.000

Z ¼�

z1                                                    0.927                                                    

z2        0.899         0.014        65.12         0.000

z3        0.913         0.013        67.62         0.000

Y ¼�

y1                                                    0.968                                                    

y2       0.953       0.009       107.57        0.000

y3       0.960       0.009       112.55        0.000

Regressions:

Estimate Std.Error z.value P(> jzj)

Y �

X        0.432        0.021         20.94        0.000

Z        0.369        0.019         18.96        0.000

X:Z        0.460        0.018         25.45        0.000

Covariances:

Estimate Std.Error z.value P(> jzj)

X ��

Z         0.200         0.024         8.24         0.000

Variances:
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Estimate Std.Error z.value P(> jzj)

x1        0.138        0.008        18.14         0.000

�2         0.204        0.009        23.19         0.000

�3         0.167        0.008        20.82         0.000

z1        0.140        0.008        18.34         0.000

z2        0.192        0.009        22.62         0.000

z3        0.167        0.008        20.71         0.000

y1        0.062        0.003        17.98         0.000

y2        0.092        0.004        22.67         0.000

y3        0.078        0.004        20.71         0.000

� 1.000        0.037        26.99         0.000

Z        1.000        0.037        26.95         0.000

Y        0.393        0.016        24.87         0.000

modsem also offers some post-estimation tools. For 
example, you can use the plot_interaction() func
tion to visualize the interaction effects (see Figure 2). It is 
similar to the margins and marginsplot commands in 
STATA (StataCorp, 2023):

plot_interaction(x ¼ “X”, z ¼ “Z”, y ¼ “Y”, 

xz ¼ “X:Z”,

vals_z¼c(–1, −0.7), model¼est_qml)

In the modsem package, you can visualize the interaction 
effects using the plot_interaction() function. The 
parameters for this function are defined as follows:

� x: The name of the variable on the x-axis.
� z: The name of the moderating variable.
� y: The name of the variable on the y-axis.
� xz: The name of the interaction term.
� vals_z: The values of z at which to plot the effect of 

x on y.
� model: A model fitted using modsem.

This function enables researchers to visualize how the 
interaction between variables influences the dependent vari
able, making it easier to interpret the results of the model.

3. Application to Real-Life Datasets

3.1. Application 1 (Interaction Effect): Theory of Planned 
Behaviour

The Theory of Planned Behaviour (TPB) is a social psycho
logical theory used to predict human behaviour. The theory 
posits that behaviour is a function of intention, which in 
turn is a function of attitude, subjective norm (SN), and per
ceived behavioural control (PBC) (Ajzen, 1991). According 
to Ajzen (1991), a “behavioral intention can find expression 
in behavior only if the behavior in question is under vol
itional control.” In other words, Ajzen (1991) specifies an 
interaction effect where an individual’s PBC will moderate 
the effect of their intentions on their behaviour, indicating 
that a high PBC will increase the effect of intentions on 
behaviour. The model is visualized in Figure 3

The data is taken from a UK sample, used in a replica
tion study by Hagger et al. (2023). The data was collected at 
two different timepoints, with each latent variable having 
between 3 and 6 indicators, each specified as a 7-point 
Likert scale. For simplicity, four indicators were selected for 
each latent variable here (ignoring the differences in time
point), resulting in each latent variable having 4 indicators 
with high communalities (� 0:7). The lavaan syntax for 
the model is as follows:

model < - ‘

# Outer Model (Based on Hagger et al., 
2007)

Figure 2. Plot of the marginal effect of X on Y given Z, created using the plot_interaction() function.
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ATT ¼� att3þatt2þatt1þatt4

SN ¼� sn4þsn2þsn3þsn1

PBC ¼� pbc2þpbc1þpbc3þpbc4

INT ¼� int2þint1þint3þint4

BEH ¼� beh3þbeh2þbeh1þbeh4

# Inner Model (Based on Steinmetz et al., 
2011)

# Causal Relationships
INT�ATTþSNþPBC

BEH�INTþPBC

BEH�INT:PBC

‘

The models were estimated using the CA, UCA, RCA, 
DCA, LMS, and QML approaches. For comparison, we also 
estimated a model using Mplus (called through modsem). 
The code used to estimate the models is as follows:

est_ca <- modsem(model, data¼TPB_UK, method 

¼ “ca”)

est_uca <- modsem(model, data¼TPB_UK, method 

¼ “uca”)

est_dca <- modsem(model, data¼TPB_UK, method 

¼ “dblcent”)

est_rca <- modsem(model, data¼TPB_UK, method 

¼ “rca”)

est_lms <- modsem(model, data¼TPB_UK, method 

¼ “lms”, nodes ¼ 100) # for increased precision
est_qml <- modsem(model, data¼TPB_UK, method 

¼ “qml”)

est_mplus <- modsem(model, data¼TPB_UK, method 

¼ “mplus”)

The structural coefficients can be seen in Tables 1 and 2. 
In general, the estimates for the interaction effect were quite 
similar across the different approaches. The models using 
QML and CA yielded an interaction effect (INT � PBC) 
around 0.13, LMS and Mplus around 0.14, and UCA and 
DCA around 0.15.

3.2. Application 2 (Quadratic Effect): Jordan Sample 
from PISA 2006 Survey

This example was obtained from Umbach et al. (2017), 
where the authors tested a model with two quadratic effects 
and a single interaction effect, using a dataset included in 

the nlsem package. The data originally stemmed from the 
large-scale assessment study Program for International 
Student Assessment (PISA) 2006 (Organisation for 
Economic Co-Operation and Development, 2009), which 
measured the reading, mathematics, and science proficiency 
of 15-year-old students.

In their paper, Umbach et al. (2017) tested a model 
where career (CAREER) aspirations were predicted by 
enjoyment of science (ENJ) and academic self-concept in 
science (SC), where the relationship between ENJ and 
CAREER was moderated by SC. Furthermore, the model 
included the quadratic effects of both ENJ and SC on 
CAREER. The model can be seen in Figure 4.

The lavaan syntax for the model is as follows:

model <-‘

# Measurement Model

Table 2. Estimates from the DA approaches using a UK sample for the TPB 
model.

Approach Y X Estimate Std. error p value

LMS INT ATT −0.060 0.027 .027
SN 0.051 0.032 .112
PBC 1.036 0.035 <.001

BEH PBC 0.404 0.050 <.001
INT 0.601 0.046 <.001
INT�PBC 0.140 0.005 <.001

QML INT ATT −0.051 0.030 .081
SN 0.047 0.033 .150
PBC 1.027 0.036 <.001

BEH PBC 0.361 0.053 <.001
INT 0.629 0.048 <.001
INT�PBC 0.130 0.008 <.001

Mplus INT ATT −0.053 0.031 .089
SN −0.065 0.024 .008
PBC 1.090 0.036 <.001

BEH PBC 0.405 0.052 <.001
INT 0.588 0.048 <.001
INT�PBC 0.141 0.008 <.001

Table 1. Estimates from the PI approaches using a UK sample for the TPB 
model.

Approach Y X Estimate Std. error p value

CA INT ATT −0.093 0.029 .001
SN 0.039 0.034 .245
PBC 1.105 0.042 <.001

BEH INT 0.581 0.048 <.001
PBC 0.437 0.054 <.001
INT�PBC 0.132 0.006 <.001

UCA INT ATT −0.056 0.027 .039
SN 0.049 0.033 .133
PBC 1.031 0.035 <.001

BEH INT 0.570 0.049 <.001
PBC 0.415 0.053 <.001
INT�PBC 0.147 0.009 <.001

DCA INT ATT −0.068 0.028 .015
SN 0.043 0.033 .197
PBC 1.049 0.036 <.001

BEH INT 0.638 0.047 <.001
PBC 0.350 0.051 <.001
INT�PBC 0.150 0.011 <.001

RCA INT ATT −0.053 0.028 .054
SN 0.042 0.033 .205
PBC 1.034 0.036 <.001

BEH INT 0.753 0.047 <.001
PBC 0.241 0.050 <.001
INT�PBC 0.153 0.011 <.001

Figure 3. Theory of Planned behaviour.
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ENJ ¼� enjoy1þenjoy2þenjoy3þ

enjoy4þenjoy5

CAREER ¼� career1þcareer2þcareer3 þ

career4

SC ¼� academic1þacademic2þacademic3þ

academic4þacademic5þacademic6

# Structural Model
CAREER�ENJþSCþENJ:ENJþSC:SCþENJ:SC

‘

The models were estimated using the CA, UCA, DCA, 
RCA, LMS and QML approaches. As in the previous 
example, we also estimated a model using Mplus, for com
parison. The code used to estimate the models is as follows:

est_dca <- modsem(model, data¼jordan)

est_ca <- modsem(model, data¼jordan, method 

¼ “ca”)

est_uca <- modsem(model, data¼jordan, method 

¼ “uca”)

est_rca <- modsem(model, data¼jordan, method 

¼ “rca”)

est_lms < - modsem(model, data¼jordan, method 

¼ “lms”, nodes ¼ 15) # actually 15 ^2

est_qml <- modsem(model, data¼jordan, method 

¼ “qml”)

est_mplus <- modsem(model, data¼jordan, method 

¼ “mplus”)

The structural coefficients can be seen in Tables 3 and 4. 
While the coefficients for the TPB model were relatively 
similar across the different approaches, the results for the 
PISA model gave drastically different outcomes depending 
on the approach used. In general, the estimates using LMS, 
QML, RCA, CA, and Mplus are quite similar, where both 
the quadratic effects (ENJ2 and SC2) and the interaction 
effect (ENJ � SC) are relatively small. Notably, only the quad
ratic effect of ENJ was significant, when estimated using CA 
and RCA. The UCA and DCA approaches, however, yielded 
larger estimates for both the interaction effect and the quad
ratic effects, where the coefficients were multiple times 
larger than those estimated using the other approaches.

It is beyond the scope of the current paper to discuss 
why the estimates differ so much between the different 
approaches. However, it is worth noting that such discrep
ancies become apparent only when using multiple 

approaches on the same dataset, something that has not 
been commonly done previously. As a consequence, the 
modsem package offers exciting new opportunities to study 
the effect of different estimation approaches in various con
texts through large-scale simulation studies.

4. Conclusion

Estimating interaction and quadratic effects in SEMs typic
ally requires specialized software or complex model specifi
cations that are prone to error and misspecification. In this 
paper, we introduce the R package modsem, designed to 
facilitate the estimation of models with interaction and 
quadratic effects using a modified version of the lavaan 
syntax, which is familiar to many R users. The package sup
ports multiple estimation methods, including the LMS and 
QML approaches, alongside the more commonly used PI 
approaches. Previously, the LMS and QML approaches were 
limited to models with a single endogenous variable. To our 
knowledge, Mplus is the only program that allows for 
more complex models using a modified version of the LMS 
approach as presented by Klein and Moosbrugger (2000), 

Table 3. Estimates from the PI approaches using a Jordan Sample from the 
PISA-2006 survey.

Approach Y X Estimate Std. error p value

CA CAREER ENJ 0.537 0.019 <.001
SC 0.420 0.022 <.001
SC2 −0.005 0.026 .839
ENJ2 0.054 0.016 .001
ENJ�SC −0.022 0.030 .466

UCA CAREER ENJ 0.674 0.033 <.001
SC 0.444 0.030 <.001
SC2 0.046 0.022 .038
ENJ2 0.167 0.025 <.001
ENJ�SC −0.140 0.041 .001

RCA CAREER ENJ 0.521 0.019 <.001
SC 0.464 0.023 <.001
SC2 0.005 0.022 .806
ENJ2 0.041 0.017 .018
ENJ�SC −0.017 0.038 .659

DCA CAREER ENJ 0.674 0.033 <.001
SC 0.444 0.030 <.001
SC2 0.046 0.022 .038
ENJ2 0.167 0.025 <.001
ENJ�SC −0.140 0.041 .001

Table 4. Estimates from the DA approaches using a Jordan sample from the 
PISA-2006 survey.

Approach Y X Estimate Std. error p value

LMS CAREER ENJ 0.525 0.019 <.001
SC 0.464 0.023 <.001
SC2 0.002 0.034 .942
ENJ2 0.026 0.024 .278
ENJ�SC −0.049 0.047 .290

QML CAREER ENJ 0.523 0.020 <.001
SC 0.467 0.024 <.001
SC2 −0.002 0.037 .958
ENJ2 0.026 0.022 .236
ENJ�SC −0.039 0.048 .415

Mplus CAREER ENJ 0.524 0.020 <.001
SC 0.466 0.023 <.001
SC2 0.002 0.033 .957
ENJ2 0.026 0.021 .216
ENJ�SC −0.047 0.043 .273

Figure 4. Model from Umbach et al. (2017).
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and no program has yet implemented an extended version 
of the QML approach.
modsem addresses this gap by implementing extended 

versions of both the LMS and QML approaches as experi
mental features. While initial results are promising, further 
validation and refinement are necessary to ensure their 
robustness. Future work should focus on this validation pro
cess and the exploration of alternative methods for estimat
ing interaction effects in SEMs. For instance, Bayesian 
approaches using Markov Chain Monte Carlo (MCMC) 
have shown promising results (Marsh et al., 2013). 
Additionally, recent developments by the lavaan team, 
such as the planned implementation of latent interaction 
estimation using a structural after measurement (SAM5) 
(Rosseel & Loh, 2021), indicate exciting future directions for 
the field.
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