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ABSTRACT

Many of the advancements reconciling individual- and group-level results have occurred in the context
of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple
interpretations for the resulting dynamic structures; however, they do not possess the flexibility of
models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time exten-
sion of the group iterative multiple model estimation (GIMME) procedure which enables researchers to
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fit complex, high-dimensional dynamic networks in continuous time. Our results indicate that ct-
gimme outperforms N =1 model fitting in continuous time by pooling information across multiple
subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample
heterogeneity. We conclude with an empirical illustration and highlight the limitations of the approach

relating to the identification of meaningful starting values.

The social and behavioral sciences have witnessed a surge in
the popularity of person-specific models for describing indi-
vidual processes overtime over the last decade. This is due—
in part—to the convergence of myriad developments such as
frequent calls for increased attention to individuals (Fisher
et al., 2018; Molenaar, 2004) alongside technological devel-
opments for gathering large streams of data at little to no
burden to participants via smartphones, mobile applications,
and wearable devices. Indeed, publications concerning
“person-specific’ modeling on Google Scholar have risen
from 15,600 articles published between 1910 and 2010 to
over 21,800 published only between 2010 and 2023. This
certainly indicates an increased awareness and interest in
modeling person-specific dynamics. However, this area of
statistical modeling in the social and behavioral sciences is
still in development.

Several issues limit our ability to describe and model
individual dynamics such as the (mis)alignment of our data,
theories, and models, as well as how to best identify group-
level signals from a sample of noisy person-specific proc-
esses. Further, the popularity of person-specific modeling
has brought along with it criticisms on how to best derive
group-level inference from a sample of N =1 results
(Hamaker, 2004; Lundh, 2015; Runyan, 1983). These argu-
ments are cogent when many person-specific analyses find
heterogeneity to be a rule more often than an exception
(e.g., De Vos et al, 2017; Gates & Molenaar, 2012; Kim
et al., 2007). However, while individuals may vary greatly
from each other in their prototypical dynamics over time,
some similarities have been consistently identified within

the literature. For instance, the concept of “inertia” has been
replicated consistently (Koval et al., 2012; Kuppens et al.,
2010). Methods over the last decade have been developed
with this purpose in mind and have ranged from fully con-
strained models fitted to the “chained” time series of a sam-
ple of individuals (e.g., Epskamp et al, 2018) to more
relaxed methods that characterize groups based on features
common to a majority of individuals in the sample (e.g.,
GIMME; Gates & Molenaar, 2012).

In the current work, we adapt a popular algorithmic pro-
cedure developed in the discrete-time framework: the Group
Iterative Multiple Model Estimation (GIMME; Gates &
Molenaar, 2012) procedure, to operate in continuous time. In
so doing, we introduce a novel contribution to the literature
that identifies systematic covariations in change processes
across a sample of individuals with person- and (possibly)
time-specific time intervals between successive occasions, and
assist in the construction of group- and individual-level
dynamic networks henceforth referred to as continuous-time
GIMME or ct-gimme. Using a continuous-time model as
the computational backbone, the ct-gimme algorithm read-
ily handles methodological concerns that may affect its dis-
crete-time counterparts, such as unequal intervals between
successive measurement occasions, and other identification
challenges, particularly in determining the directionality of
contemporaneous cross-process influences.

We provide a review of the original, discrete-time
GIMME algorithm. Then, we introduce the continuous-time
extension: ct-gimme. We describe how it is fitted in the
continuous-time framework, and discuss differences between
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the original GIMME algorithm and the continuous-time
form. The proposed changes and alterations naturally motiv-
ate the questions which are evaluated in a simulation study
followed by an empirical illustration that highlights the
strengths and weaknesses of the proposed algorithm.

Gimme

GIMME is a powerful methodological tool that allows
researchers to identify group-level commonalities in person-
specific processes (Gates & Molenaar, 2012). We detail the
modeling framework from which GIMME is based and pro-
vide a brief description of the algorithm to provide context
for ct-gimme in the following sections.

Modeling in Discrete-Time

The vector autoregression (VAR) is the most utilized statis-
tical model in person-specific modeling (Piccirillo &
Rodebaugh, 2019). VAR models are intuitive as variables at
one moment in time relate to others at a given lag order
(Lutkepohl, 2005). For the remainder of this work, we will
only be concerned with lag-order 1 models. VAR models
have seen extensive application in the social and behavioral
sciences ranging from econometrics (Liitkepohl, 2005),
affective modeling (Chow et al., 2010; De Vos et al., 2017),
and neuroimaging (Gates & Molenaar, 2012; Wang et al,
2023). Work with these models has led to key insights relat-
ing model parameters VAR-type models to real-world phe-
nomena. For instance, “emotional inertia” relates to the
auto-regressive parameters of a VAR model and describes
the rate at which a variable returns to its baseline levels
(Kuppens et al., 2010). Likewise, cross-regression coefficients
have been used to describe how and why individuals exhibit
broader forms of “inertia” by means of strongly connected
dynamics that prevent substantial change (i.e, network
density; Lydon-Staley et al., 2019; Pe et al., 2015). The
standard VAR(1) model may be described as follows:

n=pu+ o +§ (1)

where 1, is a p-variate vector of latent variables measured at
t, u is a p-variate vector of latent intercepts, @] is the lag-1
regression coefficients matrix or transition matrix which
relates variables at the previous time-point to the current
time point, and {, is a p-variate residual vector that is
assumed to be multivariate normally distributed with zero
means and covariance matrix, ¥*.! Notably, the {*} super-
script serves as an indicator to differentiate the standard,
discrete-time VAR from alternative representations intro-
duced in the following sections.

The discrete-time GIMME procedure uses an extension
of the standard VAR introduced in Equation (1) known as
the structural VAR (SVAR; Liitkepohl, 2005). Formally, we
may express the SVAR as:

'An alternative, arguably more popular form of the VAR model with non-zero
intercepts is structured such that the current deviation from the mean relates
to previous deviation from the mean as an AR process of lag 1 (e, , —p =
D; (g, —p) + & (e.g, Li et al, 2022; Liitkepohl, 2005)

0, = pu+ Qon, + Orpy_y + (2)

where # is a p-variate vector of latent variables measured at
t, u is a p-variate vector of latent intercepts, @, is the lag-0
regression coefficients matrix whose diagonal elements are
fixed to 0, @; is the lag-1 regression coefficients matrix or
transition matrix which relates variables at the previous
time-point to the current time point, and {, is a p-variate
residual vector that is assumed to be multivariate normally
distributed with zero means and a diagonal covariance
matrix, V.

The SVAR differs from the standard VAR model via the
inclusion of the contemporaneous effects captured by, @,.
These contemporaneous relations capture effects that
occurred in the time between two successive measurement
occasions when all higher-order lags have been accounted
for (Liitkepohl, 2005). For example, momentary fluctuations
in emotions at the daily level may indicate that a substantial
number of associations exist within the ®, matrix. This
indicates that relations between emotions fluctuate at faster
time scales than those captured by day-to-day assessments.
The modeling of contemporaneous relations has been bene-
ficial in allowing researchers to model processes that unfold
faster than the observed time differences between successive
occasions present in their data (e.g., A;; Gates & Molenaar,
2012; Wright et al., 2019).

The GIMME Algorithm

The procedure for GIMME defines a null model for all indi-
viduals in a sample where the diagonal elements of the @]
matrix (i.e., the AR coefficients) is freed for estimation
alongside the diagonal elements of the residual covariance
matrix, W* (Gates et al, 2010; Gates & Molenaar, 2012).
Following this, the modification indices (Mls; Sorbom,
1989) for all individuals are assessed and the parameter
which would improve model fit for a user-specified propor-
tion of individuals is added to all individuals. This proced-
ure is repeated iteratively until no parameters can be added
to improve the model fit for all individuals in the sample.
The models then proceed with individual model fitting via
the same iterative procedure where their baseline model is
the group model derived in the previous step. The proced-
ure stops when no paths improve model fit or when model
fit criteria are satisfied (e.g., the Root Mean Squared Error
of Approximation or RMSEA; Gates & Molenaar, 2012).
Once paths can no longer be added, paths that are no lon-
ger statistically significant are pruned from the models.
GIMME has been extensively applied to the modeling of
functional connectivity in neuroimaging research (Gates &
Molenaar, 2012; Henry et al., 2019) where processes may
unfold many times faster than our ability to sample.
Further, GIMME’s pooling of the modification indices of
many subjects has been shown to improve its ability to
recover individual signal from noise relative to person-
specific modeling of individual time series (e.g., Gates &
Molenaar, 2012; Lane et al., 2019; Park et al., 2023). These
benefits withstanding, some limitations may still affect the
performance of GIMME. Being formulated in the discrete-



time framework and based on the VAR framework, GIMME
requires that data be equidistant for parameter estimates to
be accurate and the SVAR parameterization may fail to
capture group- and subgroup-level dynamic patterns that
exist within the data (Park et al., 2024). Further, changes in
the sampling frequency of the data may impact the coeffi-
cients and their comparability across studies; that is, the
parameters obtained from a VAR model are temporally
dependent (Liitkepohl, 2005; Ryan & Hamaker, 2022). The
assumption of equally-spaced data-points can be controlled
for by careful planning of the study design. However, failure
to satisfy this condition can result in the VAR coefficients
being a blend of the multiple lags that were contained in
the sampling intervals (Ryan & Hamaker, 2022). Further,
the comparability of VAR estimates may be compromised if
studies use wildly different sampling intervals for the same
underlying processes (Gollob & Reichardt, 1987; Voelkle
et al., 2012).

The following section introduces the novel contribution
of the current work: ct-gimme. We provide a description
of the model fitting in continuous time and relate it to fit-
ting in discrete-time as described above. We then describe
in detail the algorithm of ct-gimme and additional consid-
erations that separate it from its discrete-time counterpart
and provide motivation for our simulation and empirical
illustrations.

Continuous-Time GIMME

Modeling in Continuous-Time

An alternative approach for describing processes through
time is by explicitly modeling their change via continuous-
time modeling. This framework is powerful in relating
changes among variables explicitly to changes in their pre-
defined time scales (Arminger, 1986; Boker & Graham,
1998) and is ideal for our implementation of ct-gimme.
These models can tell us how our current state of depres-
sion may be associated with quick or slow changes in our
resulting anxiety. Continuous-time models have already
been used in the literature on psychological disorders such
as depression and antisocial behavior (e.g., Delsing & Oud,
2008). Continuous processes such as these may be described
as a set of differential equations that describe how changes
in one variable may affect changes in another variable.
These relations can be expressed in the following general
form:

dn(t) = [b + An(t)]dt + GAW(¢) (3)

where dy is a p-variate set of differentials in the latent varia-
bles, n(t), A is a p x p drift matrix which describes how
changes in the values of 7 at time relate to itself and other
variables, b is a vector of intercepts or home-bases, W(#) is
a vector of process noises (specifically, standard Wiener
processes) whose changes between any two-time points,
dW(t), are assumed to be normally distributed with zero
means and variance-covariances that depend on G and the
time interval between two time points, At and GG' = Q
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which represents the diffusion matrix (Arnold, 1974;
Voelkle et al., 2012).

Analytic solutions have been proposed for Equation (3)
to delineate # for any real or integer values of time, includ-
ing discrete-time solutions that relate n, to n,_,, for which
the time difference, At, can only assume integer values (e.g.,
At=1, 2, and so on; Voelkle et al., 2012; Chow et al., 2022;
Hecht & Zitzmann, 2021a). These exact transformations are
provided below and allow one to transform elements of the
general SDE to the equivalent VAR forms presented in
Equation (1). Given a specified At, the mapping between
the discrete- and continuous-time formulations can be
expressed as:

@ (At) = AN (4)
Y (Ar) = irow{AZ' [e*#% — Trow(Q)} (5)

where Ay = AQI+1® A; row(.) is a row operator which
transforms a matrix row-wise into a column vector and
irow(.) is the reverse operation of turning a column vector
into a matrix, Q is the continuous-time error covariance
matrix also known as the diffusion matrix (Arnold, 1974;
Voelkle et al., 2012). Of note is that the sampling interval
becomes encoded into both the ®* and W* matrices at their
given lag-orders. Thus showing how the parameters of the
standard VAR are dependent on the sampling interval of
the data. We provide an illustrative figure in Figure 1, which
highlights how parameters from the continuous-time model
transform to those in the discrete-time VAR model
at At =1 or 10.

The limitations of the discrete-time VAR models are
addressed by fitting models in the continuous-time frame-
work (Chow et al, 2022; Ryan & Hamaker, 2022).
Continuous-time models can handle irregularly spaced data
and are not sensitive to the sampling rate of the data
because of their approximation of the derivatives of the
underlying processes (Gollob & Reichardt, 1987; Ryan &
Hamaker, 2022). While a growing body of work has been
established to ease researchers into interpreting continuous-
time models (Van Montfort et al., 2018), relatively less has
work has been done to simplify entry into continuous-time
modeling. Likewise, beyond a handful of methods, relatively
few avenues exist for identifying group-level structures in
individual-level processes in the continuous-time frame-
work. Those that do typically fall within multilevel frame-
works that impose strict assumptions on the structure of
individual-level models (e.g., Boker & Graham, 1998;
Nestler & Humberg, 2021).

The ct-Gimme Algorithm

The general procedure for fitting ct-gimme is presented
in Algorithm 1. Here, we discuss the algorithm of ct-
gimme for unsupervised model construction in continuous
time via modification indices. The use of modification indi-
ces has a rich history in both Structural Equation Modeling
as well as the discrete-time GIMME framework (Gates &
Molenaar, 2012; Whittaker, 2012). ct-gimme adopts the
use of modification indices to stay in line with the precedent
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Figure 1. Relating the true CT VAR (A and Q) to the DT VAR at a A; = 1 (@7 (Ar—;) and ¥*(A—1)) and A; = 10 (D7 (Ar—10) and ¥ (A¢_10)). Solid lines indicate posi-
tive coefficients while dashed lines indicate negative coefficients. Notably, paths in A become weaker as A; increases but manifest as covariances in the ¥* matrices.

set by the discrete-time GIMME which has shown reliable
performance in detecting effects and controlling for error
inflation (Lane et al., 2019). Here, we focus on the specifics
of ct-gimme which draws heavily from its discrete-time
counterpart: GIMME (Gates & Molenaar, 2012). ct-gimme
is fit in the state-space framework which can be described
as a set of state and space equations. The state equation, as
shown in Equation (3), describes the dynamics of the system
of interest in continuous time. In addition to the state equa-
tions are the measurement equations which are described by:

Yok = Cp e+ 1k (6)

where y,, is g-variate vector of observed data of the k'
measurement occasion at time, ¢, C is a g X p factor loadings
matrix which relates latent variables to observed variables
and is analogous to a factor loadings matrix in the structural
equation modeling framework, #, ; is the p-variate vector of
latent variables, and r,j is a g-variate measurement errors
with covariance matrix, R. In the implementation for ct-
gimme, we assume by default that single variables directly
correspond to single factors. In such a case, C reduces to an
identity matrix and may be omitted for parsimony.

A user inputs their pre-processed N, p-variate time-series
and ct-gimme defines a null state-space model to begin

optimization. By default, the diagonal elements of the drift,
A, and process noise, Q matrices are freed for estimation
whereas all off-diagonal elements are fixed to 0.00. The fac-
tor loadings, C, are assumed to be diagonal with one item
loading onto each factor; though, this may be changed at
the user’s preference to form multi-indicator latent factors.
Users may specify that the measurement error variances in
R be freely estimated by using the argument ME = TRUE,
with starting values specified via the argument rvals to be
a vector of p-values, or a single value to be set for all varia-
bles. By default, this is disabled and measurement error var-
iances are assumed to be near 0.00 (i.e., le~®) but can be
enabled to capture measurement error variances. Finally,
non-informative initial values are set for the latent variables,
with zero means and an identity matrix as their covariance
matrix, but users are encouraged to input their own values
whenever possible.

When executed, ct-gimme fits the null model specified
above to all N subjects (see Algorithm 1 for full details).
Then, modification indices are extracted for all subjects to
identify the parameter which would improve the model fit
for a majority of individuals. The discrete-time GIMME
algorithm used a pre-defined value of 75.0% (Gates &
Molenaar, 2012). Thus, if a model parameter would improve



the model fit for at least 75.0% of the sample, then the
model parameter would be added for all individuals. In the
case of ct-gimme, the program default is set to 51%. This
lower setting is to err on the side of discovery of group-level
structure but can be changed by user specification. Of all
parameters that pass this “majority criterion” within an iter-
ation, the parameter with the largest average modification
index across all subjects will first be freed up for all subjects
in the sample, and model fitting will begin again. This pro-
cedure repeats iteratively at the group-level until one of the
stopping criterion is met: 1. The dynamic matrix, A, is full
or 2. The largest modification index is no longer statistically
significant for a majority of individuals (suggesting e.g., that
51% of the sample does not share a path).

Error Inflation

The first stopping criterion for ct-gimme is straight for-
ward. A full drift matrix is saturated and no further parame-
ters can be added. However, such iterative model
adaptations through repeated use can lead to inflation in
Type-I error rates. The discrete-time GIMME has imple-
mented corrections for this exact issue by penalizing the
a-level by the sample size and implementing stopping crite-
ria based on model fit (e.g., NNFI, CFI, and RMSEA; Lane
et al.,, 2024). However, certain metrics such as RMSEA are
not straightforward to incorporate in the continuous-time
framework due to the need to define a saturated model for
comparison (Oh et al., 2024). To this end, we propose and
evaluate two avenues for controlling o-inflation in addition
to serving as feasible stopping criteria for the ct-gimme
algorithm: 1. An adjusted form of the Benjamini-Hochberg
correction and 2. Model selection via sample-size adjusted
Bayesian information criterion (BIC) to reflect the original
corrections of discrete-time GIMME via direct « correction
as well as model-based selection via information criterion.
As these implementations for error inflation are new to the
GIMME framework in both discrete- and continuous-time,
these conditions are likewise tested and evaluated in our
simulation studies in the sections that follow.

Benjamini-Hochberg Correction. The Benjamini-Hochberg
correction for multiple comparisons is a well-established
and evaluated method for adjusting the family-wise error
rate (Benjamini & Hochberg, 1995, 1997) and have been
shown to be relatively easy to implement and more powerful
than alternatives such as the Bonferroni method (Thissen
et al.,, 2002). Simply, the adjusted Benjamini-Hochberg cor-
rection is applied to the a-levels of each test of the modifi-
cation indices by becoming progressively more conservative
with each additional parameter (Benjamini & Hochberg,
1997, 1995). Formally, the correction can be calculated as:

o ?)
m

where o is the pre-selected a-level, i is the ranking of a
given p-value in descending order, and m is the total num-
ber of tests being executed. Since ct-gimme operates in a
model construction framework, the total number of tests
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cannot be known ahead of time. Thus, we constrain
ct-gimme’s value of m to be the number of freeable
parameters in the dynamic matrix. Thus, a 5-variate model
with the diagonal elements fixed to be estimated would
result in m = 20 total possible tests. Likewise, the ranking of
each test is taken in sequence. In ct-gimme, the
Benjamini-Hochberg correction simply replaces the p-value
of each successive MI until statistical significance is not
achieved and the resulting model is retained. Once the indi-
vidual-model fitting state begins, each subjects’ models are
estimated iteratively but pick up from the last Benjamini-
Hochberg adjusted p-value from the group fitting stage. In
theory, this would result in lower Type-I error rates with a
possible decrease in power as well (i.e., higher Type-II error
rates). However, when compared to the discrete-time
GIMME algorithm’s penalty by sample size, the Benjamini-
Hochberg correction may be less conservative.

Sample-Size Adjusted BIC. In the absence of fit measures
for continuous-time models such as RMSEA, we chose to
make use of the sample-size adjusted BIC (BIC,; Sclove,
1987). Information criterion (IC) based model selection is a
large field of study and several potential IC measures could
have served as potential candidates for evaluating model
performance in ct-gimme. The decision to make use of
IC-based measures was influenced by work indicating their
strength over similar model fit indices such as the CFI and
TLI in the structural equation modeling framework (e.g.,
Bollen et al.,, 2014). Likewise, the BIC, has been shown to
outperform other IC-based measures that were readily avail-
able such as the AIC (Tein et al., 2013). The sample size
adjusted BIC may be expressed as:

2
BIC, = kln (” +
24

) —2In(L) (8)

where k indicates the number of parameters in the model, n
is the sample-size, and L represents the maximized value of
the likelihood function at the estimated parameters. In the
case of ct-gimme’s implementation in OpenMx, this is
obtained via prediction error decomposition by means of a
hybrid Kalman filter approach (Boker et al, 2011;
Schweppe, 1965). Models with lower BIC,’s are preferred
and-intuitively-this selects models which exhibit the best fit
to the data scaled by the number of parameters in the
model and the sample size. The implementation of BIC, in
ct-gimme tracks the BIC, for each subject at each param-
eter. Once the best candidate MI is not statistically signifi-
cant at the o = 0.05-level, 3-additional parameters are added
based on the highest average MI value across the sample.
Once these additional 3-parameters are added, the model-
state that corresponded to the lowest average BIC, across
the sample is selected based on a Convex Hull (CHULL;
Ceulemans & Kiers, 2006) where:

_ BIC,, (x_1) — BIC, (x)

= 9)
BIC,, x) — BIC,, (k+1)

Sty

where st indicates the model stage at the k™ additional par-
ameter which is calculated by the ratio of the differences in
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BIC,, between the current BIC, (k) and prior, BIC, (x_1),
and current versus future, BIC, (x.;), model states. This
procedure was chosen over simply selecting the lowest pos-
sible BIC, to reduce the possibility of over-fitting due to
sampling variability, and sensitivity to individual outliers.
Thus, in theory, this procedure would select the earliest
model that maximized the improvement to BIC,. Once this
procedure has been performed at the group level, it is
repeated at the individual level using the person-specific
BIC,, instead of the average BIC,. Both the Benjamini-
Hochberg and BIC, corrections can be enabled via standard
arguments in ct-gimme.

Algorithm 1 CT-GIMME

Input: y, ,, fori=1,..,N.
Output: A;, Q;, fori=1,...,N.

Stopping criterion satisfied by meeting @ or @ or @
or @:

® Dynamics matrix, A; is full

@ Largest Modification Index is not statistically signifi-
cant for a majority of individuals in the sample

® If check.BIC =TRUE, run 3-extra iterations follow-
ing largest MI and select model corresponding to best
BIC relative to model complexity during model search
procedure

@ If Benjamini.Hochberg = TRUE, penalize p-value
scaled by number of parameters added using
Equation (7)

fori=1,..,N do
Initialize continuous-time model with diag(A;) and
diag (Q;) free
while stopping criterion not met do
e Fit continuous-time model to all, N individuals
e Obtain MlIs
e If in group-stage, check parameter corresponding
to maximum average
MI in raw value is statistically significant at %*(1)
for a majority of individuals
o If in individual-stage, check parameter correspond-
ing to maximum MI in raw value is statistically
significant at y?(1)
o If so, free element of the drift matrix, A;
end
Prune non-significant paths
Begin do loop for each individual with NULL model
set as the group-level model
end

Methods
Simulation Study

Throughout the design of ct-gimme, several aspects of the
algorithm had to be adjusted from the original discrete-time
GIMME. This led to research questions regarding the per-
formance of ct-gimme as well as how it may perform
against alternate approaches for fitting models in either dis-
crete- or continuous-time. We begin this section via an

explicit description of the research questions which motivate
our simulation study.

Motivating Research Questions

Our motivating research questions (RQs) focused on evalu-
ation of the performance of ct-gimme under ideal and
misspecified conditions, and comparisons of ct-gimme
against benchmarks in discrete and continuous time. The
first research question (RQ1) was to compare the different
model-fitting options for ct-gimme when modeling
assumptions are met: standard MI, Benjamini-Hochberg
corrected MI, or BIC, selected models across conditions of
sample size, effect size, and within-sample heterogeneity
conditions. Upon determination of the best performing ver-
sion of ct-gimme, all subsequent RQs only relied on that
selected criterion. The expectation of RQ1 was that both the
Benjamini-Hochberg and BIC, corrections would outper-
form the raw modification index; however, their perform-
ance against one another in deriving acceptable models was
less clear and of interest for the current investigation.

The second research question (RQ2) centered around the
strengths and weaknesses of continuous-time modeling with
ct-gimme under model misspecification. We were inter-
ested in the performance of ct-gimme in conditions where
the continuous-time model is either 1. provided with incor-
rectly labeled time-intervals which are assumed equidistant
and 2. incorrectly neglect modeling of measurement errors
which may impact the quality of resulting parameter esti-
mates. Broadly, RQs 1 and 2—broadly—assessed the general
performance of ct-gimme and validate its characteristics
in a vacuum.

The third research question (RQ3) introduced compari-
sons of ct-gimme to alternative approaches in continuous-
time that empirical researchers may consider when fitting
models to real-world data. Namely, 1. strictly N = 1 model-
ing and 2. strictly group-based modeling. We evaluated the
performance of ct-gimme against these two alternative
approaches for model fitting in continuous time across
conditions of sample size, effect size, and within-sample het-
erogeneity conditions. It was expected that the strictly
group-based models would outperform ct-gimme when
samples were homogeneous but perform worse when indi-
vidual differences in dynamic network structures were pre-
sent but unaccounted for. Likewise, we hypothesized that
ct-gimme would outperform strictly N =1 model fitting
when some groups structures were present due to ct-
gimme’s ability to pool information at the sample-level
prior to individual model fitting.

Finally, RQ4 evaluated ct-gimme to discrete-time
GIMME. One may expect that ct-gimme would outperform
discrete-time GIMME in instances where the measurements
were not equally spaced. However, a unique characteristic of
the original GIMME algorithm is that it is formulated in the
structural VAR which enables it to model “faster” dynamics
via the contemporaneous effects. Thus, the degree to which
ct-gimme might outperform GIMME-if at all-was of inter-
est for the current investigation.



Simulation Design

Data were simulated from the Ornstein-Uhlenbeck (OU)
model which is a special case of Equation (3) (Oravecz &
Tuerlinckx, 2011). The OU model can be thought of as the
continuous-time analogue for a discrete-time VAR model
with some differences in parameterization. Where A = —B
indicating the drift matrix and b = Bu where u is a mean-
vector. For the current work, the means are assumed to be a
vector of 0’s. Manipulations of the within-sample heterogen-
eity in dynamics will alter B. Specifically, all subjects shared
a common dynamic model when heterogeneity was not pre-
sent. When heterogeneity was present, all subjects shared a
common set of connections in the off-diagonal elements of
B comprised of 15% of the total available off-diagonal ele-
ments. In conditions where within-sample heterogeneity was
enabled, an additional 10% of oft-diagonal paths in B were
randomly added to each participant. Depending on the
effect size condition, these cross-process relations may take
values of either 0.30 or 0.90.

Data were simulated at a temporal resolution of t = 0.1.
When At was manipulated, the raw time-series were sub-
sampled at the corresponding time intervals (e.g., At = 0.50
or 1.0). When irregularly sampling time-points, time-points
were sampled from the following scheme: t; = Z;:I(l +
Aty) where At, was assumed to follow a gamma distribution
with a shape parameter of 2, and a scale parameter of 0.5.
That is, each subsequent measurement occasion was drawn
such that it was at least 1-unit in time later plus a randomly
drawn value from a gamma distribution that was heavily
concentrated around the value of 1.0. This yielded an
irregularly spaced sampling structure that was both shifted
in time as well as random in nature with an average At =
2.0 but highly skewed. The resulting N-subject time series
was then fitted to the different modeling frameworks.

For ct-gimme, models were fit in R. Results from using
different model selection measures were compared for RQl
(i.e., under raw MI, Benjamini-Hochberg correction, and
BIC,). Following this, the approach that yielded the best
overall performance were used to test all subsequent RQs.
Unless otherwise specified, time-indices were labeled cor-
rectly with diagonal elements of the drift and process noise

Table 2. Research questions crossed with simulation factors and rationales.
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variances freed for initial estimation with measurement
errors freed when the conditions dictated they be freed.

For the strict N = 1 models, continuous-time state-space
models were fitted to each subject with all drift parameters
freed for estimation alongside the diagonal elements of the
process noises. Once the full model was fitted, non-signifi-
cant parameters were removed from the models and refitted
to reflect a naive approach to fitting these models. For the
strict group-level models, a multi-group model was specified
in OpenMx where a common, dynamic model was fitted to
all subjects and parameters in the full drift matrices and
diagonal elements of the process noise matrices were con-
strained to equality. Once a group-level model was fitted to
the data, the group-level model was pruned and refitted. For
all other arguments, model configurations were identical to
ct-gimme. Finally, when discrete-time GIMME imple-
mented using the gimme package in R using program
defaults (Lane et al., 2024) assuming that the time intervals
were equally spaced. All models across all conditions were
tested across 500 Monte Carlo replications per condition.

Simulation Conditions

All simulation metrics and their broad rationale are depicted
in Table 2 by their corresponding research question. Below,
we detail the specifics of these conditions and relate them to
our three motivating questions.

The first two parameters in the simulation study which
were not manipulated or adjusted: sample sizes and network
sizes. The rationale for fixing these two were because the
effects of manipulating these variables are well established in
the literature (e.g., Park et al., 2020, 2023). Notably, manip-
ulations of sample size would be more apparent when tak-
ing into account subgroups of individuals within the
broader sample (e.g., Park et al., 2024). However the current
investigation does not study subgrouping thus the impacts
were deemed minimal. Likewise, the network size was not
manipulated for similar reasons. In particular, as the num-
ber of estimable parameters increases, the sample sizes
required to sufficiently estimate them generally increases as
well; however, given our manipulation of proportions of

Model Time Effect Size Sampling Rate Heterogeneity Sampling Regularity Measurement Error
RQ1 ct-gimme only T =50 & 100 EF=0.30 & 0.90 At =0.50 & 1.0 No & Yes Regular None
with: raw MI,
Benjamini-
Hochberg,
and BIC, )
RQ2 ct-gimme with T=100 EF=030 At =10 No ti=>,,0+%) K ~ 0.80
BIC, where
X ~7(2,0.5)
RQ3 ct-gimme with T =50 & 100 EF=0.30 & 0.90 At =0.50 & 1.0 No & Yes Regular None
BIC,, model
selection, N =1,
and group-level )
RQ4 ct-gimme with T=100 EF=0.30 At =050 & 1.0 No ti=>,(1+%) None
BIC, and where
GIMME X; ~7(2,0.5)

Note: Conditions are enabled during each research question. T = number of time-points per individual, EF = magnitude of cross-process dynamics, At = sam-
pling rate of true time-series, Heterogeneity can be No/Yes indicating whether individual differences were simulated, Sampling Regularity denotes whether data
were sampled regularly or irregularly and by what mechanism, Measurement Error denotes if measurement error variances were simulated and the average

item-level reliability of the simulated data.
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effects, we expected our design to generalize to larger net-
works with similar proportions of zero- to non-zero paths.

For RQl, Time, Effect Size, Sampling Rate, and
Heterogeneity conditions were manipulated and crossed with
one another to broadly assess the performance of the differ-
ent corrections for ct-gimme when undergoing model
modification via raw modification indices, the Benjamini-
Hochberg correction, and BIC,. By crossing these factors, we
were able to assess the performance of the three different
approaches for handling o-inflation in the model modifica-
tion search in different configurations of sample-size, effect
size, and heterogeneity across sampling rates. In particular,
sample sizes ranged from 50 to 100 time points, reflecting
the sample sizes typically seen in empirical applications
involving time series data (e.g., Fisher et al., 2017; Lane et al.,
2019; Wright et al.,, 2019). Effect sizes were selected to span
from nigh undetectable to nearly explosive by means of vary-
ing the weights of the cross-process dynamics while keeping
the centralizing tendencies fixed at —0.50. Sampling rates dif-
fered from At = 0.50 to 1.00 to mirror conditions with faster
sampling faster than a unit time interval. Finally, heterogen-
eity was simulated at 0% to 10% of cross-process paths being
randomly added to individual models to simulate cases where
individual variation was prominent in the dataset.

RQ2 took the best performing argument from RQ1 and
defined targeted simulations to test how well ct-gimme
performed under conditions of model misspecification via
irregularly spaced time-series with [in]correctly labeled
time-series as well as in conditions where measurement
errors are present in the data and modeled or ignored. The
additional factor of regular spacing was sampled from a 7y
distribution as noted in the prior section as well as in
Table 2. This was to simulate a condition where simulated
participants regularly responded both late (i.e., At = 2.0) as
well as with a non-normally distributed range. Likewise, the
inclusion of the measurement error variances were meant to
simulate cases where the true, data-generating process
exhibits measurement noise that is left unmodeled to assess
the effects of those measurement error variances on the esti-
mated dynamics of the model.

For RQ3, ct-gimme was compared to N =1 and
group-level modeling across conditions of Time, Effect Size,
At, and Heterogeneity with regular sampling and no meas-
urement errors. These conditions largely matched the broad
tests of ct-gimme in RQ1 but compared the performance
of ct-gimme with BIC, model selection to the N =1 and
group-level conditions to evaluate the performance of ct-
gimme relative to reasonable alternative approaches for fit-
ting models in continuous-time.

Finally, for RQ4 ct-gimme with Benjamini-Hochberg
correction was compared to the discrete-time GIMME algo-
rithm in a targeted set of conditions in the presence of
irregularly spaced data and different sampling rates to high-
light the strengths of ct-gimme.

With the goals of essentially comparing various model
search procedures in continuous- and discrete-time, there
are some metrics that should be considered when conclud-
ing whether one approach performs “better” or worse than

others. In what follows, we describe how the data were gen-
erated for the simulations then, describe the performance
measures of the simulation study and how they relate to my
broad research questions and goals.

Performance Measures

The performance measures for our simulations are pre-
sented below and are related to specific research questions
when appropriate. When comparing the discrete-time
GIMME algorithm to ct-gimme, we were most interested
in the performance and recovery of the point-estimates.
Thus, we assessed measures of Type-I and Type-II error
rates, bias, and the root mean squared errors (RMSEs).
Type-I error rates were calculated as:

FPy

= 10
TNy + FPy (10)

oty
where 0 is the parameter estimate, FPp is the number of
false positives and TNy is the number of true negatives.
Type-II error rates were calculated as:

ENy
Bo

=0 (11)
FNy + TP,

where FNy is the number of false negatives TPy is the num-
ber of true positives.

Absolute biases were be used to measure the degree to
which parameter estimates deviated from their true values
and were derived as:

1L,
ABiaS() = EZ‘@;, - 0‘
h=1

where H is the total number of Monte Carlo runs, éh is the
estimated parameter estimate in the h” Monte Carlo run,
and 0 is the true parameter estimate. Absolute biases were
selected over standard biases to avoid relatively minor biases
that averaged to zero during the simulations.

Similarly, the variance of the parameter estimates needs
to be accounted for. Thus, RMSEs of the parameter esti-
mates were calculated and are given by:

(12)

(13)

Taken together, these performance measures provided
insight as to how discrete-time GIMME performed relative
to ct-gimme. To evaluate the quality of the standard error
estimates, we focused on the ct-gimme, N = 1 modeling,
and the multigroup-method, all of which returned standard
error estimates associated with the continuous-time parame-
ters. Standard error estimates returned by other discrete-
time approaches required additional transformations to the
continuous-time metrics and were not considered in this
article. We examined the mean of the standard error esti-
mates for each parameter as:

_ 1 I~
SEy = — SE 14
0 th:; 0 (14)



where SEj is the average of the standard error estimates
across the Monte Carlo runs. We also computed the stand-
ard deviation of the standard error estimates as:

H

1 —(h) _)2
ﬁZ(SEo ~SEy

h=1

SD(SE), = (15)

where gEéh) is the estimated standard error for a given par-
ameter, 0, in the h" Monte Carlo run. Together, these SEq
and the SD(SE), summarized the quality of the standard
errors in terms of their size and spread across Monte Carlo
runs.

Results

The Results of the Four Research Questions Are
Discussed in Detail Using Results from the Monte Carlo
Simulations

RQ1: Which Model Selection Method for ct-Gimme
Performs Best?

We focused on elaborating results pertaining to Type-I and
Type-II error rates because the choice of correction method
had very little effects on other performance measures when
the correctly specified continuous-time model was within
the search spaces of ct-gimme.

Figure 2’s left column displays the Type-I and II error
rates from the low- and high-effect size conditions at At =
0.50 for T'=50 and T = 100. The right column highlights
the same conditions only when At = 1.0. Generally, Type-I
and II error rates were lower with the BIC, correction in

Type-I Error Rates by EF and Sample-Size

\ Lo I HI
0.15
Model
L 0.10
5 MGM
] —— M
N = MinA
=%
= ——~ MInB
Nis1
0.00
50 60 70 8 9 100 50 60 70 8 90 100
Time
Type-Il Error Rates by EF and Sample-Size
[ Lo i HI
Model
-
g MGM
i o, - M
T —= MinA
o
= —— MinB

Nis1

—1

0.0
50 60 70 80 90

100 50 60 70 80 90 100
Time

. 385

homogeneous samples with the Benjamini-Hochberg correc-
tion and raw MI performing comparably to one another
(both ~0.08 vs =~ 0.065 for BIC,). The Benjamini-
Hochberg correction and raw MI performed comparably to
one another in Type-I and II error rates and better than the
BIC, correction indicating that the BIC, correction exhib-
ited a bias towards model parsimony.

When samples contained heterogeneous dynamics and
large effect sizes, the Benjamini-Hochberg outperformed the
raw MI in error rates. These results were expected as the
adjustments for o under the Benjamini-Hochberg approach
were more salient toward the end of the search, especially in
evaluating the statistical significance of parameters freed up
in the individual models. This is highlighted in Figure 3
which displays the Type-I and II error rates in heteroge-
neous conditions when T = 100 and At = 1.0 across effect
size conditions.

These results make sense given the BIC’s tendency to
prefer model parsimony as well as our use of a CHULL pro-
cedure which prefers the configuration of the model which
best describes the data with the fewest parameters possible.
Thus, the expectation is that we would have lower power
due to the conservative bias induced by this procedure. This
is similar to findings using applications of the CHULL pro-
cedure in other dynamic network modeling contexts to find
subgroups where CHULL methods tended to be more con-
servative than alternative approaches (see, Park et al., 2024).

Due to these results, the conclusions for RQ1 are as fol-
lows: the BIC,-based correction led to the lowest Type-I
(lower even than the nominal rate of o) and Type-II error

Type-| Error Rates by EF and Sample-Size
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Figure 2. Type-l and Il error rates across sample size (T = 50 and T = 100) when At = 0.50 (left column) and 1.00 (right column). MGM: Group-level model, Nis1:
N =1 modeling, MI: Raw Ml ct-gimme, MInA: ct-gimme with BIC, model selection, and MInB: ct-gimme with Benjamini-Hochberg correction. Generally,
Type-l and Il error rates tended to be stable across At when the sample-size was held constant with some minor differences across the columns. Notably, the multi-
group method exhibited much higher Type-| error rates when T = 50 at a At = 1.00 compared to At = 0.50.
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Type-I| Error Rates by EF and Heterogeneity
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Figure 3. Type-l and Il error rates across homogeneity (HO/HE) conditions crossed with effect size (EF = LO/HI) when T = 100 and At = 1.0. dashed line indicates
the expected nominal rate for Type-I error and an acceptable threshold for Type-Il error at 0.10 or 90% power. MGM: Group-level model, Nis1: N = 1 modeling, MI:
Raw Ml ct -gimme, MInA: ct-gimme with BIC, model selection, and MInB: ct-gimme with Benjamini-Hochberg correction.

rates when samples were entirely homogeneous. In the pres-
ence of person-specific variations in dynamic network struc-
ture, it still exhibited remarkable Type-I error rates but
tended to exhibit less statistical power for detecting person-
specific dynamics. The Benjamini-Hochberg correction
yielded Type-I error rates that were closer to the nominal
level compared to raw MIs and showed higher power than
the BIC, correction in the presence of person-specific varia-
tions. Thus, the general recommendation would be to use
BIC, if parsimony is the key goal, or when groups are
expected to be relatively homogeneous. In situations with
person-specific variations, the Benjamini-Hochberg correc-
tion might be preferred. Both of these model selection
approaches showed improvements over raw MIs. To address
other remaining research questions (i.e., RQs 2-4) we used
only the BIC, as the model selection procedure in light of
its lower Type-II error rates (i.e., higher power or sensitiv-
ity), especially under smaller T and effect size conditions.

RQ2: How Does ct-Gimme Perform in Misspecified
Conditions of Time and Measurement?

ct-gimme handles these issues well when correctly speci-
fied with shortcomings when either measurement errors or

sampling intervals are neglected or incorrect. Table 3 high-
lights conditions where ct-gimme was tested against itself
under these two special conditions. First, in the presence of
measurement error variances and second when sampling
intervals were irregular and skewed.

RQ2 utilized T = 100 time points per subject with small
effect sizes (EF = 0.30) for the cross-process dynamics and
a fixed At =1.0 under the measurement error condition.
These configurations were identical in the case of the irregu-
larly spaced condition, except that At was no longer fixed.
Instead, At was either set at the correct person- and time-
varying values, or ignored and labeled as equidistant with a
At = 1.0. We present the results of RQ2 in two broad sec-
tions now.

ct-gimme had the option for measurement errors
either enabled or disabled to effectively model the measure-
ment errors variances simulated in the true data. Our simu-
lations indicated that accounting for measurement errors led
to substantial reductions in the absolute biases for the diag-
onal elements of the dynamics (e.g., ABiasyg = 0.09 vs
ABiasn, me = 0.23). This reduction for the diagonal ele-
ments of the dynamics was reflected as well in the RMSEs
(e.g., RMSEpg = 0.12 vs RMSEyN, me = 0.25) and the stand-
ard errors (e.g., SEmp = 0.11 vs SExo me = 0.17). While not



Table 3. Simulation results comparing measurement error and irregular sam-
pling through time.

Measurement Error Irreqularly Sampled

Modeled Ignored

ME ME Correct At Wrong At GIMME
AR Bias 0.090 0.234 0.110 (0.063) 0.535 (0.235) - (0.240)
CR Bias 0.014 0.015 0.025 (0.015)  0.065 (0.020) - (0.027)
AR RMSE 0.116 0.247 0.154 (0.082) 0.914 (0.253) - (0.266)
CR RMSE 0.041 0.043 0.073 (0.041)  0.206 (0.048) - (0.066)
AR SE 0.111 0.165 0.236 0.686 -
CR SE 0.012 0.013 0.021 0.044 -
AR SD.SE 0.029 0.012 0.096 12.549 -
CR SD.SE 0.026 0.027 0.044 0.528 -
Type-I 0.048 0.045 0.049 (0.137) 0.049 (0.145) - (0.058)
Type-Il 0.001 0.000 0.009 (0.013)  0.007 (0.008) - (0.344)

Note: AR - indicates diagonal elements of the dynamics while CR indicates off-
diagonal values. RMSE is the root mean squared error, SE is the standard
error, SD.SE is the standard deviation of SEs, and Type-l and Type-Il indicate
error rates. Values in parentheses indicate values for performance metrics
when transformed to the VAR(1) metric. Hyphens indicate values that were
not calculated. For instance, standard errors for GIMME would need to be
transformed from the SVAR to VAR metric and were beyond the scope of this
simulation study.

reported explicitly, failing to account for the measurement
errors also led to pronounced biases in the process noise
variances. The off-diagonal elements of the drift matrices
were not as affected by failure to account for the measure-
ment error variances. Finally, the Type-I and II error rates
did not substantially differ between ct-gimme with and
without  estimated  measurement  error  variances
(ErrorT),pe_I = 0.048; Errorqype—;r = 0.001  vs  Errorrype_; =
0.045; Errorrype_;; = 0.000 for ct-gimme without estimated
measurement errors). These results agreed with the extant
literature regarding neglect of measurement errors and their
corresponding effects. In our simplistic example with only
measurement error variances, the most prominent effects
occurred along these diagonal elements of the dynamics and
process noise variances but in more complex scenarios,
neglecting measurement errors may results in more substan-
tial down-stream effects on the cross-processes as well (e.g.,
Schuurman & Hamaker, 2019).

ct-gimme performed well when the data-generating
OU models were sampled at irregular intervals and fitted to
the data at correctly specified time intervals (labeled hence-
forth as information restrictions or IR). Compared to results
with misspecified time intervals (abbreviated henceforth as
no IR), correct specification of the time intervals yielded
lower absolute biases for the diagonal elements of the
dynamics (i.e., ABias;g = 0.11 vs ABiasx, 1r = 0.54) as well
as the off-diagonal elements (i.e., ABiasg = 0.03 vs
ABiasn, R = 0.07). This pattern was reflected in the RMSEs
for the diagonal (i.e., RMSER = 0.15 vs RMSEN, r = 0.91)
and off-diagonal (i.e., RMSER = 0.07 vs RMSEN, r = 0.21)
elements of the drift matrices. Similarly, the standard errors
were better when ct-gimme modeled the correct time
rather than assuming equally-spaced intervals between suc-
cessive measurement occasions for diagonal (SEjg = 0.24 vs
SExo 1R =0.69) and  off-diagonal  (SEg =0.02 vs
SEno 1R = 0.04) elements of the drift matrices. Consistent
with results from the continuous-time literature (Chow
et al., 2016), misspecification of the time intervals lead to
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higher biases and lower efficiency in the point estimates.
The Type-I and II error rates were not affected strongly by
this misspecification. This lack of differences suggested that
the presence/absence of signals relative to noise could still
be recovered reasonably under the misspecification magni-
tudes considered although the signs (e.g., polarity) and qual-
ity (e.g., bias) of those estimates tended to deviate further
from their true values. Likewise, when At was manipulated
from 0.50 to 1.00, minor differences were observed in the
performance of many of the continuous-time models (see
Figure 2). Still, the various options of ct-gimme per-
formed consistently across different effect size, At, and T
conditions. For the same T and At, all approaches tended
to perform similarly with respect to Type-I and II error
rates regardless of whether they were in the low or high
effect size conditions.

Overall, the results indicate the following conclusions:
First, ct-gimme’s ability to model measurement errors can
lead to substantial reductions in biases of the point esti-
mates when measurement errors are present. Our simula-
tions only considered measurement error variances in the
true, data-generating models; however, when measurement
error covariances are more complex, these can lead to sub-
stantial differences in the modeling outcomes and dynamics
(e.g., Schuurman & Hamaker, 2019). Thus, the ability to
model and account for these errors in ct-gimme is a sig-
nificant benefit. Second, when ct-gimme was fitted with
correct temporal labeling we found improvements in the
quality of all dynamic parameters in terms of both bias,
RMSE (e.g., variation), as well as the standard errors of
these estimates. Broadly, the conclusions of these simula-
tions highlight and reinforce the strengths of modeling in
continuoustime as well as with ct-gimme. Despite requir-
ing the estimation of 5-additional parameters (i.e., the meas-
urement error variances), ct-gimme with measurement
errors outperformed its misspecified counterpart assuming
no measurement errors. Similarly, by accounting for the
true temporal sequencing of events, ct-gimme could
derive the true, data-generating process better than if data
were assumed equidistant when they were not. Thus, our
recommendation would be to enable measurement errors in
ct-gimme when feasible as allowed by sample size as well
as collecting explicit information reflecting the time elapsed
between successive occasions.

RQ3: How Does ct-Gimme Perform Against Strictly N =
1 and Group-Level Modeling?

Generally, quite well; although this is context dependent.
The full extent of comparisons between ct-gimme, per-
son-specific modeling (i.e., N = 1), and group-level model-
ing may be found in Table 4. Here, we provide a direct
discussion of selected results and comparisons.

In homogeneous conditions ct-gimme did not outper-
form the group-level method on nearly any performance
metric but consistently outperformed the person-specific
approach. In the HO/HI/T100/DT1 condition in Table 4,
the group-level model exhibited the smallest biases
(ABiaspgy = 0.04) when compared to either ct-gimme
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(ABias;q = 0.10) and N =1 modeling (ABiasy-; = 0.10).
These results were reflected for all other metrics. However,
ct-gimme performed well with Type-I and Type-II

error rates with (Type; = 0.03; Type,, = 0.02) which
were  comparable to the  group-level  approach
(Type, = 0.06; Type,; = 0.01) than N =1 approaches

(Type; = 0.07; Type;; = 0.003). This pattern was consistent
across T as well. In the low-effect size conditions (e.g., HO/
LO/T100/DT1), error rates in ct-gimme exceeded that of
N =1 approaches (Type; = 0.05; Type;; = 0.02 compared to
(Type; = 0.06; Type;, = 0.035). These improvements over
the N =1 approach manifested in reductions in biases and
RMSEs for the cross-process effects with ABias =
0.028, RMSE = 0.080 for ct-gimme and ABias=
0.041,RMSE = 0.104 for N =1 (see condition HO/LO/
T100/DT1 in Table 4). Logically, when all subjects entirely
share their dynamic structure, modeling them as a homoge-
neous group will leverage all of their collective information
to improve parameter estimation. Similarly, ct-gimme
outperforming the N = 1 approaches highlighted the unique
strengths of the GIMME-like approach. By pooling the
modification indices, ct-gimme could delineate signal
from noise better than single-subject modeling could. In
particular during simulation conditions with smaller effect
sizes; a finding well established with discrete-time GIMME
(Gates & Molenaar, 2012).

ct-gimme highlighted its strengths when samples were
comprised of a common, group-level structure with individ-
ual differences. ct-gimme exhibited excellent Type-I and II
error rates (Type, = 0.07; Type; = 0.09) compared to both
N =1 modeling (Type; =0.09; Type, =0.01) and the
group-level methods  (Type, = 0.40; Type,, = 0.21;  see
Figure 3). The expectation was that N =1 models should
exhibit consistent performance across conditions of homo-
geneity and heterogeneity since group-level information was
not being accounted for. Despite minor deviations in Type-I
and Type-II error rates, this expectation was met with fluctu-
ations likely being to the additional parameters being esti-
mated in heterogeneous conditions. The presence of any
degree of heterogeneity in the dynamic structures resulted in
inflated absolute biases for the group-level method on the
diagonal (ABiasygm = 0.20) and off-diagonal dynamics
(ABiasygp = 0.15)  when  compared to ct-gimme
(ABias;; = 0.11; ABias;, = 0.06) or the N =1 approach
(ABiasy—1 = 0.10; ABiasy—; = 0.05). While the homoge-
neous conditions favored the group-level model, all heteroge-
neous conditions across At, Effect Size, and Time highlighted
the flaws in assuming common structures throughout the
sample. These results highlighted the strengths of the N =1
approaches; however, these advantages only held when effect
sizes were relatively large (i.e., EF = 0.90). When EF = 0.30,
the N =1 modeling approaches became far less powerful
(i.e., Type,; = 0.36) and in-line with the group-level modeling
approaches (Type,; = 0.33). Overall, ct-gimme performed
the best in terms of statistical power (Type; = 0.21) while
still achieving a near-nominal Type-I error rates of 4.8%.
Logically, the group-level method was expected to perform
poorly as the presence of individual differences in dynamics
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leads to “forcing” dynamic parameters onto individuals that
did not need them because they are present for others in the
sample.

ct-gimme exhibited poorer performance with smaller
sample sizes (i.e., T = 50 vs T = 100). Notably, the biases of
the point estimates for the homogeneous condition with
low effect sizes only changed from 0.170 to 0.115 when
transitioning from T =50 to T =100, respectively.
However, ct-gimme maintained high power even with as
few at 50-measurement occasions (T507yp.—;; = 0.16 vs
T1007,pe—;; = 0.02). While a substantial increase compared
to the 100-measurement occasion condition, ct-gimme
performed substantially better than the person-specific
approach, (T507yy_;; = 0.62).

One condition did not align with expectations; that is,
the results for the Type-I error rates for the group-level
model in condition HO/HI/T50/DT1. In this condition—illus-
trated in Figure 3-the Type-I error rates for the group-level
model were substantially higher than the nominal level (e.g.,
~ 14%). Closer inspection of modeling results revealed a
small number of spurious paths that emerged in the group-
level models at relatively small magnitudes (e.g., ~ 0.09).
These spurious paths tended to emerge when the processes
were close to the boundary of being unstable (showing
increasing deviations from the baseline of 0). As an
example, Figure 4 highlights two time series of the same
variable for the same subject but in different configurations
of effect size (i.e., low versus high). Of note, the higher
effect size condition-while mathematically stationary-still
exhibits a greater degree of variation over time. When these
time series are then compared across multiple subjects, add-
itional patterns could potentially emerge that appear to be
caused by “phantom” paths or dynamics.

Ultimately, the results of RQ3 indicated that ct-
gimme’s performance is situated between that of N =1
modeling and group-level modeling. When researchers can
assume dynamic structures are homogeneous across sam-
ples, the group-level modeling approach will provide the
best results across all performance metrics applied in our
simulation studies across any configuration of sample size,
effect size, and At. However, instances where complete
homogeneity exists in dynamic modeling are not commonly
seen in empirical applications of dynamic networks (e.g., De
Vos et al.,, 2017; Ebrahimi et al., 2024; Hamaker et al., 2005;
Park et al., 2023; Wright et al., 2019). Likewise, we saw that
N =1 modeling approaches did well when samples were
heterogeneous and effect sizes were large; however, the per-
formance of the N = 1 procedures did not significantly out-
perform ct-gimme. In contrast, when effect sizes were
smaller, the N = 1 approaches were eclipsed by ct-gimme
in terms of statistical power via its ability to leverage infor-
mation across the samples.

RQ4: How Does ct-Gimme Perform Against Discrete-
Time GIMME?

Generally, quite well. Comparisons between the parameter
estimates of ct-gimme and GIMME were compared on
the metric of the standard VAR(1) by transforming both the
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Figure 4. Visualization of single trajectory in low- and high-effect size conditions. While both processes are stationary the “wandering” in the high effect size condi-

tions may have resulted in pronounced Type-I errors in the group-level models.

OU models and SVAR models to the VAR(1) metric using
transformations described in Equation (4). Note that such
transformations were not necessary for inferential purposes
within the ct-gimme framework per se, but were done only
to facilitate comparisons of estimates from the two GIMME
approaches under a common model.

When data were measured irregularly, ct-gimme
(ABias = 0.06, RMSE = 0.08) outperformed the discrete-
time GIMME in terms of absolute biases and RMSEs when
placed upon the common metric of the VAR(1)
(ABias = 0.24, RMSE = 0.03; see parenthetical values in
Table 3). The cross-process effects exhibited similar patterns
for ct-gimme (ABias = 0.02, RMSE = 0.04) compared to
GIMME (ABias = 0.27, RMSE = 0.07). These results indi-
cated that parameter estimates for discrete-time GIMME
tended to be more biased and varied than those from ct-
gimme. Interestingly, discrete-time GIMME’s performance
was similar to ct-gimme with incorrect coding for the
time-intervals (i.e., A;) in terms of ABiases and RMSEs.
These results highlight the unique strengths of modeling
processes in the continuous-time framework where account-
ing for irregular spacing between data-points may yield sig-
nificant biases (e.g., ~ 3.81x greater) when spacing between
measurement occasions is neglected.

GIMME outperformed the ct-gimme algorithm in
terms of Type-I error rates (5.8% compared to 13.7% for
ct-gimme), however. As a trade-off GIMME exhibited less
power compared to ct-gimme with Type-II error rates
approaching 34% compared to 1.3% for ct-gimme. This is
in line with prior work that suggests that the false-positive
rate for GIMME tends to be good (Gates & Molenaar, 2012)

while exhibiting low power in the presence of weak dynam-
ics (Nestler & Humberg, 2021).

To elucidate the higher Type-I error rates of ct-gimme
relative to GIMME in the VAR metrics, we show below the
raw and transformed values for the drift matrix in ct-
gimme. The inflated Type-I error rates for ct-gimme can
be explained by nature of the transformations required to
transform the continuous-time VAR to the discrete-time
form. Take for instance a true matrix, A, and its discrete-
time transform at At = 1.0:

[-0.50 0.00 0.00 0.00 —0.30]
0.00 —0.50 0.00 0.00 0.00
A= 000 000 -050 000 030 |,
—0.30 0.00 0.00 —0.50 0.00
0.00 0.00 000 0.0 —0.50
S _ (16)
0.61 0.00 0.00 0.00 —0.18
0.00 0.61 0.00 0.00 0.00
®*(Atip) = | 0.00 0.00 0.61 0.00 0.18
—0.18 0.00 0.00 0.61 0.03
| 000 0.00 000 0.00 0.61 |

Then, see a similar transformation for an estimated

dynamics matrix, A, and its discrete-time counterpart:



[—0.66 0.00 000 -038 —0.44]
0.00 —0.69 0.0 0.0 0.00
A=1000 000 -049 -032 030 |,
—0.18 0.00 0.00 —0.85 0.00
| 000 000 000 000 —0.54
] Y
0.53  0.00 0.00 —0.18 —0.25
0.00 050 0.00 0.0 0.00
O*(At;p) = | 0.01 0.00 0.61 -0.17 0.17
—0.08 0.00 0.00 044  0.02
| 000 0.00 0.00 000 0.58

In this illustrative case, a misspecification of 2-parameters
yields 4-incorrect, non-zero parameters when transformed
to the discrete-time case which are highlighted in bold.

These results indicated that the ct-gimme algorithm
performed well when compared to GIMME in discrete-time;
however, GIMME does exhibit strong performance with
respect to its false discovery rate by maintaining a near
nominal Type-I error rate (i.e., 5.8%) even when modeling
abnormally sequenced time-series.

Broad-Level Simulation Conclusions

Our simulations highlighted the strengths and weaknesses of
the new ct-gimme algorithm in a vacuum as well as more
broadly against alternative methods in continuous- and dis-
crete-time. Notably, of the adjustment options integrated
into ct-gimme, the BIC, model selection criterion outper-
formed the raw MI approach and the Benjamini-Hochberg
corrections in homogeneous conditions. With heterogeneity
in dynamics, the Benjamini-Hochberg performed better in
terms of both Type-I and Type-II error rates; thus, gener-
ally, ct-gimme’s BIC, procedure may be preferable when
groups are considered more homogeneous and the
Benjamini-Hochberg correction when samples are suspected
to be more heterogeneous in favor of discovery of dynamic
structures.

Our validations of ct-gimme indicated strong perform-
ance. By developing ct-gimme in the state-space frame-
work, options for integrating and estimating measurement
errors are readily allowed and our simulations indicated that
neglecting to incorporate them into the continuous-time
models biased our centralizing tendencies. Likewise, when
data were sampled from a skewed distribution to simulate
unequally spaced data, we found that explicitly modeling
the time differences resulted in notable improvements to all
dynamic parameters in terms of their accuracy and
confidence.

Likewise, ct-gimme possessed the strengths of both
N =1 and group-level modeling procedures with few of
their drawbacks. Across homogeneous conditions, the
group-level fitting outperformed ct-gimme and N =1
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modeling. However, in heterogeneous conditions, ct-
gimme outperformed both N =1 and group-level modeling
when effect sizes were relatively weak; a situation more
likely to be encountered in the social and behavioral scien-
ces. By leveraging information from the whole sample to
identify common features prior to estimating person-specific
dynamics, ct-gimme almost unilaterally outperformed the
N =1 approach on metrics of bias, variance (RMSE), qual-
ity of the parameter estimates (SEs), and Type-I/II error
rates. This advantage held even in the presence of individual
differences in dynamics. Likewise, the presence of individual
differences in dynamics posed a unique challenge for the
group-level approach which assumes a common dynamic
pattern for the entire sample. This often led to the group-
level approach performing quite poorly in configurations
involving any degree of within-sample heterogeneity. By
contrast, ct-gimme’s tended to remain much more stable
between homogeneous and heterogeneous conditions.
Finally, when compared to the discrete-time GIMME
algorithm, ct-gimme performed well-particularly in con-
ditions when data were irregularly spaced as is to be
expected by modeling in continuous-time. However, ct-
gimme did exhibit higher Type-I error rates in relation to
GIMME possibly as a result of the nature of how the con-
tinuous-to-discrete transformation operates.

Empirical lllustration

Modeling Dynamics

For our empirical illustration, we leveraged data taken from
Fisher et al. (2017). These data were selected due to past
work fitting discrete-time GIMME-methods to this dataset
providing avenues for comparisons between ct-gimme
and past results. We fitted ct-gimme to symptom state-
level data and evaluated the continuous-time dynamic net-
works. We expected that the ct-gimme would identify
group-level structures in the continuous-time dynamics
should they be present. We also compare the results
obtained from the discrete-time literature on the same data
to highlight any differences from fitting the models in this
new framework.

Sample

Data were comprised of N = 40 participants with clinical-
levels of generalized anxiety disorder (GAD), major depres-
sive disorder (MDD), or comorbid GAD and MDD. The
sample was majority female (Mgmae =26) and White
(nwpire = 19). A full description of the sample and its char-
acteristics may be found in Fisher et al. (2017).

Measures

Participants in the study were assessed over =~ 30 days and
responded to 21-items of mood and anxiety symptoms 4-
times a day. Symptoms were drawn from the Diagnostic
and Statistical Manual of Mental Disorders, Fifth edition for
GAD and MDD. Items participants responded to included:
down and depressed, hopeless, loss of interest or pleasure,
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worthless or guilty, worried, and restless. Participants were
asked to rate from 0 to 100 their experience of each item
since the previous measurement occasion. For instance, a
participant may rate the degree to which they felt “hopeless”
from 0 to 100.

Measurement occasions were random and exact time-
codes were provided in the dataset on an hourly-basis.
Hourly times were transformed to indices denoting the
hourly-time difference from the initial measurement occa-
sion and divided by 24. This implied that a At = 1.0 is asso-
ciated with a daily measurement occasion. This allowed for
sufficient density in measured time-points for each partici-
pant. When the gap between any two subsequent measure-
ment occasions was larger than one third of a day, empty
rows were inserted into the dataset for each participant.

For the illustration, 5-symptoms were selected to match
the network size of our simulations. These symptoms were:
Irritable, Fatigue, Concentration Difficulties, Rumination, and
Avoiding Activities.

On average, participants completed 130.43 (SD = 19.27)
reports with a range of 87 to 212 completed reports. Data
were preprocessed by methods detailed by Fisher et al
(2017) and gathered second-hand. Additional preprocessing
was done in the current study by within-person and within-
variable standardizing each variable’s scores.

Model Fitting
A group-level continuous-time model was fitted to the N
p-variate time-series in R using the OpenMx package. All
subjects were constrained to equality on all dynamic param-
eters, process noise variances, and measurement error var-
iances. These parameters were also were freed for estimation
at the group-level. Once completed, the process noise and
measurement error variances were extracted from the model
output and used as the rational starts from which ct-
gimme would begin estimation.

ct-gimme was fitted to the N p-variate time-series in R.
Program settings were set to default with the BIC, adjust-
ment selected based on its performance in our earlier simu-
lation results. If the performance based on BIC, was not

Participant No. 12 Participant No. 15

=05

0.74
4 -0,99

=037

sufficient (i.e., not finding a common, group-level structure),
the Benjamini-Hochberg correction for family-wise o would
be used instead as it was found to exhibit more power in
heterogeneous samples. Process noise and measurement
error variances were fixed to values obtained during the
group-level modeling stage to serve as rational starting val-
ues. For this illustration, measurement error variances were
fixed but process noise variances were freed for estimation
for each subject. Group-level paths were determined using a
threshold of 51.00% to err on the side of discovery.

The results of ct-gimme yielded a set of participants
with estimable models which represented = 45% of the
sample. The remaining ~ 55% of the sample encountered
issues relating to model convergence, specifically relating to
the recovery of the standard errors for their dynamic
parameters and/or process noise variances. We detail the
dynamics and characteristics of participants with converged
results. Following this, we provide a brief summary of, and
some speculations of the reasons for non-convergence to
facilitate future developments of ct-gimme.

A common, group-level structure was not found by ct-
gimme when using the BIC, model selection procedure. To
err on the side of discovery, we implemented the
Benjamini-Hochberg correction which exhibited higher
power when samples were heterogeneous and a common,
group-level structure still did not emerge. This indicated a
high degree of heterogeneity in the person-specific networks.
Figure 5 displays the continuous-time dynamic network
structures of 3-randomly selected participants whose
dynamics pose interesting theoretical possibilities. All three
participants exhibited strong, excitatory relations from
Concentration Difficulties to Avoiding Activities. This indi-
cated that greater difficulty concentrating was associated
with increased avoidance of activities. Likewise, all centraliz-
ing tendencies were strongly negative indicating that each
symptom tended to decay in severity with time.
Interestingly, Participant No. 12 exhibited Fatigue as a core
symptom which would cause several downstream -effects
(i.e., greater fatigue led to greater irritability but less concen-
tration difficulties leading to less avoidance of activities). In
contrast, Concentration Difficulties was more influential for

Participant No. 21

-0.8

Concentrate Concentrate
Difficulties Difficulties

Figure 5. Continuous-time dynamic networks for 3 randomly selected participants. Blue edges indicate excitatory dynamics and red edges indicate inhibitory
dynamics. Centralizing tendencies (self-looping) were forced to be freed for estimation for all participants.



Participant No. 15 with greater levels of difficulty being
associated with greater irritability, rumination, and activity
avoidance. Finally, Participant No. 21 exhibited a feedback
loop where high levels of Concentration Difficulties were
associated with avoidance of activities which would then
lead to greater rumination which would then suppress con-
centration difficulties.

One of the strengths of modeling in continuous-time is
the ability to translate the continuous-time dynamic struc-
ture to different intervals of time to see what the relations
between variables looks like at various practical intervals
(Driver & Voelkle, 2018; Ryan et al., 2018). Likewise, these
transformations can be used to inform future work for iden-
tifying optimal time-scales to maximize the likelihood of
detecting effects (Hecht & Zitzmann, 2021a). Figure 6 high-
lights the discretization of Participant No. 12’s continuous-
time dynamic network into hourly, bi-daily, daily, and
weekly dynamic networks. The transformations indicate
that-on an hourly basis-Participant No. 12’s dynamics are
largely inertial (Kuppens et al, 2010). That is, symptoms
did not tend to influence other symptoms on an hour-by-
hour basis and-instead-were regulated by themselves in the
prior hour. For instance, feeling fatigue an hour ago would
highly relate to fatigue at the current moment but fatigue an
hour ago wouldn’t be strongly predictive of irritability now.
The cross-process dynamics begin to show prominence
when transformed to a bi-daily (12-hour) schedule. The
model indicates that fatigue for Participant No. 12 was
related to greater irritability and lower activity avoidance and

Participant No. 12 — Hourly, At=0.042

Avoiding
Activities

Avoiding | 4
Activities |

Fatigue

0.04

. 393

concentration difficulties 12-hours later. On a daily basis, the
connection between fatigue and irritability becomes even
stronger indicating that fatigue today would be strongly asso-
ciated with irritability the following day in addition to other
downstream effects. Finally, at a weekly scale, the strongest
influence that remains is between fatigue and irritability sug-
gesting that fatigue exhibits fairly long-lasting impacts on
Participant No. 12’s irritability from week-to-week.

These results highlight an important connection to dis-
crete-time applications conducted on this same dataset by
Fisher et al. (2017). Notably, both applications highlighted
significant heterogeneity in the temporal dynamics across
the participants. In our applications, no dynamic patterns
were present for more than 51% of the sample. Likewise, in
their larger network application, Fisher et al. (2017) noted
that the heterogeneity in the data indicated that the disor-
ders under investigation may be “too great” to limit to a
purely nomothetic nosology of clinical psychopathology.
While symptom states in both applications were meaningful
across both ct-gimme and in work by Fisher et al. (2017),
the key difference lied in how those symptoms affected
other symptoms in the network. As noted above,
Concentration Difficulties was influential in all three of our
randomly selected participants; however, the down-stream
effects of Concentration Difficulties were largely heteroge-
neous even across our own sample.

As noted, we encountered convergence issues in a subset
of the participants. Closer inspection suggested that one par-
ticipant exhibited a dramatic shift in their dynamic

Participant No. 12 - Half a Day, At=0.5

Avoiding
Activities

Fatigue

Avoiding | o i 0.06
@‘ 0.01 Fatigue

Figure 6. Discretized dynamic network of participant No. 12 at different At configurations of 0.042, 0.50, 1.00, and 7.00 indicating hourly, bi-daily, daily, and
weekly relations among the five symptoms, respectively. Blue edges indicate positive associations between variables at one moment in time and the next. Red
edges indicate negative associations. Self-loops indicate the effect a variable has on itself at a subsequent time.
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processes roughly halfway through the study period (Figure
7). Specifically, Participant No. 5 exhibited dynamics with
periodic rises and falls in their symptom levels but following
the halfway mark, the participant switched to exhibiting a
floor effect with significantly less variation on all 5 symp-
toms used in this investigation. This type of change or alter-
ation in dynamics may be characterized as a regime change.
These regime changes can be modeled explicitly in the con-
tinuous-time framework (e.g., Chow et al.,, 2018); however,
this was beyond the scope of the application.

Likewise, we found that person-specific estimation of the
measurement error variances could differ dramatically from
the measurement error variances derived from the group-
level model. Given the observation that individuals were
largely heterogeneous in their dynamic network structures,
it should come as no surprise that the measurement error
and process noise variances would be person-specific as

well. When we attempted to model both the measurement
error and process noise variances, we ran into additional
convergence issues likely relating to the relatively small sam-
ple-size in the study and the number of parameters being
estimated. Thus, the compromise was to keep the fixed
measurement error variances in favor of process noise var-
iances for the purposes of this illustrative example. Further
work and development needs to be conducted in order to
allow for ct-gimme to dynamically evaluate when process
noise, measurement error variances, or both can be freed
for individuals and prioritize the quality of those estimates
in addition to recovery of the dynamic parameters.

The empirical illustration highlighted several substan-
tively interesting features across a select group of partici-
pants as well as the technical challenges that need to be
addressed for widespread adoption and proliferation of these
complex continuous-time models. Results of the three
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Figure 7. Time series of participant No. 5 for all variables. Notably, participant seems to exhibit a distinct change or alteration to their dynamics around halfway

through the study.



selected participants indicated high centralizing tendencies
for wvariables such as Concentration Difficulties and
Rumination with relatively weaker centralizing tendencies
for variables such as Fatigue and Irritability. When trans-
lated to a discrete-time analogue, this implies that feelings
of Fatigue and Irritability tend to exhibit high “inertia” (i.e.,
high autoregressive terms; see Figure 6). Indeed, for
Participant No. 12, this implies that feelings of Fatigue and
Irritability tend to persist for long periods of time, take lon-
ger to recover from, and exhibit extensive connections to
other variables in their dynamic networks affecting their
Concentration and Avoidance of activities. These results
aligned with prior findings conducted in the discrete-time
framework using the same dataset (see Fisher et al., 2017).
The results of ct-gimme also aligned with other results
from Fisher et al. (2017) as noted above such as the pres-
ence of large degrees of heterogeneity in dynamic patterns
underscoring the relative consistency between the two stud-
ies in both the discrete- and continuous-time frameworks.

Participant No. 15 exhibited significant dependence of
Irritability, ~Activity Avoidance, and Rumination on
Concentration Difficulties. This implies that this participant—
when faced with difficulties concentrating-tends to become
more irritable, avoids activities more, and becomes more
ruminatory. Recent literature has attempted to identify
bridge symptoms (Jones et al, 2021). These symptoms may
be indicative of symptoms or variables that are highly influ-
ential to the state of the overall network; particularly in the
case of symptoms networks of multiple disorders. In the
case of Participant No. 15, it becomes evident that the state
of their dynamics relies heavily on Concentration Difficulties
and may serve as a valuable target for intervention in future
investigations.

Additionally, the failure for several subjects to success-
fully converge highlighted key weaknesses and areas to
improve upon the ct-gimme algorithm and how it initial-
izes person-specific models in particular when estimating
both measurement error variances and process noise varian-
ces. In addition, the process of fitting ct-gimme could be
further streamlined by adding checks for when single sub-
jects encounter difficulties during optimization and model
fitting to flag users.

Discussion

Despite the myriad advantages of modeling dynamic proc-
esses in continuous-time, the application of these complex
models is still critically underutilized (Ryan & Hamaker,
2022). Furthermore, tools for addressing within-sample het-
erogeneity in the continuous-time framework are still few in
number (Hunter, 2014, 2024; Liu et al., 2021). The current
work contributes multiple innovations to the literature. First
and foremost, a novel extension of the GIMME algorithm
for the continuous-time framework. This extension allows
researchers to effectively model dynamic processes in the
continuous-time framework and draw upon many of its
strengths such as the identification of optimal time-scales
via transformation of the continuous-time drift matrix
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among others (e.g., Hecht et al., 2019; Hecht & Zitzmann,
2021a). Additionally, ct-gimme allows users to identify
common, sample-level dynamics while drawing upon sam-
ple-level information to delineate signal from noise.
Furthermore, the GIMME framework differs from other
popular frameworks such as multilevel modeling in that
group-level structures do not constrain individuals to a par-
ticular final model structure. This is due to the two-stage
estimation which identifies a common, group-level structure
followed by individual model fitting (see Gates & Molenaar,
2012, for more information regarding GIMME). Second, the
development of ct-gimme contributes a user-friendly
means for empirical researchers to explore continuous-time
modeling. While many complexities belie continuous-time
modeling, this serves as one-of many otherfirst step
towards disseminating these complex models.

Our results indicated that ct-gimme performed well
when compared to benchmark measures. Specifically, N = 1
or person-specific model fitting and group-level modeling.
Both comparisons represent two extreme ends of how
researchers may view dynamic processes unfolding as either
entirely idiosyncratic or uniform across all individuals.
Across our simulation studies, we found that ct-gimme
reliably performed better than the N = 1 procedures due to
its ability to draw information across the sample to identify
key, group-level dynamics. These paths would then further
strengthen ct-gimme’s ability to identify person-specific
dynamics later on. This ability to leverage sample-level
information for person-specific parameter recovery allowed
ct-gimme to compensate for relatively short person-
specific time-series. These results are contingent on the
degree of homogeneity within a given sample and prior
research has provided guidelines on these relations in con-
tinuous-time modeling when balancing temporal sampling,
T and participants N (see, Hecht & Zitzmann, 2021b).
Likewise, ct-gimme tended to outperform the group-level
procedure in the presence of individual differences in
dynamic structures by identifying common group features
but enabling person-specific expression via the two-stage
approach.

Our illustration highlighted the steps researchers may
take when implementing ct-gimme as well as the benefits
and pitfalls of modeling in continuous-time. As noted, the
illustration failed to recover sound models for a large num-
ber of participants due to myriad convergence issues relating
to shifts in dynamics, boundary limits that-when freed-
exploded, and difficulty in determining whether measure-
ment error or process noise variances should be freed in
lieu of the other. On individual probing, these decisions
were ultimately person-specific with some participant’s
converging when some process noises were fixed with
measurement error variances were freed and vice versa. The
ct-gimme approach attempts to automate many of
the decisions to construct continuous-time models from the
ground up; however, many decisions are still-ultimately-left
to the user. That being said, the ct-gimme approach of
iteratively adding a single parameter tended to yield fewer
convergence issues when compared to fitting person-specific
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continuous-time models with all dynamic parameters freed
for estimation.

Limitations

Several limitations exist within the context of the current
work. First, the OU models used in our simulations are not
entirely reflective of typical continuous-time dynamic mod-
els. The relatively clean nature of our OU models was
designed to give a clear idea on how manipulations of spe-
cific parameters and factors could result in changes to the
results. As a result-however-the models themselves are
somewhat artificial. Future research could benefit from a
more extensive simulation study that begins from a model
derived from empirical results. Likewise, the estimation of
ct-gimme imposes a diagonal process noise covariance
structure which may not be practical for real-world continu-
ous-time processes which can exhibit notable covariances in
their parameterization (e.g., Oravecz & Tuerlinckx, 2011).
ct-gimme could-in theory-be extended to search the pro-
cess noise covariances in addition to the dynamics matrices
when undergoing model construction; however, more exten-
sive testing would be required. Extending upon this further,
due to the unique flexibility presented by OpenMx, almost
all model parameters could be tested via the modification
indices. This could include building the measurement model
in addition to the dynamic model in a purely data-driven
fashion. This would allow for specification of multi-indica-
tor dynamic factor models with latent variables. Our simula-
tions also assumed that no means were present in the data
of either our simulation or empirical illustration (due to
centering). As a result, we exclude a vital component of psy-
chological processes relating to trends. Past work has illus-
trated how neglecting trend-level information may bias
dynamic parameters but can also be explicitly accounted for
in continuous-time models (Lohmann et al., 2022, 2024).
These developments highlight the importance of explicitly
modeling trend-level information and serves as an avenue
for future development for ct-gimme.

Our comparison models (i.e, N =1 and Group-level
models) represented two extreme ends of the “idio-thetic”
spectrum of models available to researchers. While continu-
ous-time models certainly lag behind discrete-time methods,
our comparisons were not exhaustive by any means. Future
research should compare the performance of ct-gimme
against approaches which assume continuous- rather than
discrete differences between participants in a sample such as
the multilevel or hierarchical frameworks. These assume a
common fixed structure about all model parameters with
differences between participants being associated with per-
son-specific variation about those fixed estimates. These dif-
ferences between ct-gimme and multilevel models would
further elucidate long-standing considerations on whether
groups differ by continuous or discrete differences in
dynamic structures (Hunter, 2024).

The empirical illustration highlighted some flaws in ct-
gimme. Notably, the specification of initial conditions and
starting values can significantly impact the resulting models

and whether or not they converge. Entire dissertations could
be written on the specification of initial conditions and
starting values. The avenue we took was to fit a group-level
model and use the resulting parameter estimates for the
process noise and measurement error variances as starting
values for ct-gimme. However, it could be the case that
process noises and/or measurement error variances are per-
son-specific and thus the starting values we used may have
been inappropriate for many in the sample if heterogeneity
were present as was the case in our application. Due to the
relatively short time-series relative to the number of esti-
mated parameters, we were not able to free up both the pro-
cess noise variances and the measurement error variances
for estimation during the fitting of ct-gimme. More inves-
tigation needs to be done regarding these issues to better
understand the limitations of ct—-gimme in relation to data
quality, sample size, and network size. Likewise, some par-
ticipants exhibited clearly non-stationary dynamics (e.g.,
Participant 5; Figure 7).

Regime-switching methods have already been extended
into the continuous-time framework and have been applied
readily to various contexts (Chow et al., 2018) and software
packages (Ou et al.,, 2019). ct-gimme could be extended to
account for non-stationarity in dynamics within or between
individuals. One such approach could be to segment or sub-
group individuals through time and seeing whether individ-
uals coalesce with themselves at other time periods via
subgrouping methods in a manner similar to how subgroups
are derived for heterogeneous time-series of multiple sub-
jects (e.g., Gates et al., 2017; Park et al., 2020) or by inclu-
sion of time-varying parameters (e.g., Chen et al, 2018;
Chow et al, 2011; Fisher et al, 2022). In the former
approach, a rolling window could be applied to individual
time-series and test whether individuals get “clustered” with
themselves based on their dynamics. In such cases, individu-
als would roughly exhibit similar dynamic patterns. In the
latter case, the non-stationarity could be explicitly integrated
into the modeling framework by accounting for how
dynamic parameters change over time. Notably, recent work
has demonstrated how time-varying continuous-time models
may be implemented (Hecht et al, 2024). Moreover, the
current application of ct-gimme investigated scenarios
where samples are comprised of a single common dynamic
structure  with individual differences in dynamics.
Alternatively, samples could be comprised of multiple con-
stituent subgroups of individuals who each share more in
common with a select group of others than they do with
other members of the overall sample. The GIMME-frame-
work has already been extended to this subgrouping case
(e.g., S-GIMME; Gates et al., 2017) but it-as well as other
subgrouping methods-are solely developed in the discrete-
time framework (e.g., Gates et al, 2017; Park et al., 2024).
Future work should extend ct-gimme to include sub-
grouping routines to further parse out within-sample het-
erogeneity in dynamic structures. Further, experiments
could address how well subgroups derived in the discrete-
time framework align with those derived from the



continuous-time framework and whether subgroup solutions
are dependent on At.

Despite these limitations, ct-gimme exhibits promising
performance in relation to alternative methods for fitting
continuous-time models (e.g., group-level and person-
specific approaches) and tends to outperform its discrete-
time form in select scenarios. Further, by extending the
GIMME framework to the continuous-time framework,
researchers may draw upon the many benefits of modeling
in continuous-time whilst also benefiting from the strength
of the GIMME approach. Theoretically, the GIMME frame-
work is attractive as it implies a common, group-level struc-
ture without imposing any real-valued constraint on those
parameters. In contrast to other popular approaches that
“pull” participants towards a specific value, individuals in
the GIMME framework may share common structural paths
with entirely opposite signs (i.e., X — Y = + for one par-
ticipant vs X — Y = — for another). This flexibility encour-
ages theoretical conceptualizations on the relevance of
variables in addition to their magnitude and polarity.
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