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ABSTRACT 
Many of the advancements reconciling individual- and group-level results have occurred in the context 
of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple 
interpretations for the resulting dynamic structures; however, they do not possess the flexibility of 
models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time exten
sion of the group iterative multiple model estimation (GIMME) procedure which enables researchers to 
fit complex, high-dimensional dynamic networks in continuous time. Our results indicate that ct- 
gimme outperforms N ¼ 1 model fitting in continuous time by pooling information across multiple 
subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample 
heterogeneity. We conclude with an empirical illustration and highlight the limitations of the approach 
relating to the identification of meaningful starting values.
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The social and behavioral sciences have witnessed a surge in 
the popularity of person-specific models for describing indi
vidual processes overtime over the last decade. This is due— 
in part—to the convergence of myriad developments such as 
frequent calls for increased attention to individuals (Fisher 
et al., 2018; Molenaar, 2004) alongside technological devel
opments for gathering large streams of data at little to no 
burden to participants via smartphones, mobile applications, 
and wearable devices. Indeed, publications concerning 
“person-specific” modeling on Google Scholar have risen 
from 15,600 articles published between 1910 and 2010 to 
over 21,800 published only between 2010 and 2023. This 
certainly indicates an increased awareness and interest in 
modeling person-specific dynamics. However, this area of 
statistical modeling in the social and behavioral sciences is 
still in development.

Several issues limit our ability to describe and model 
individual dynamics such as the (mis)alignment of our data, 
theories, and models, as well as how to best identify group- 
level signals from a sample of noisy person-specific proc
esses. Further, the popularity of person-specific modeling 
has brought along with it criticisms on how to best derive 
group-level inference from a sample of N ¼ 1 results 
(Hamaker, 2004; Lundh, 2015; Runyan, 1983). These argu
ments are cogent when many person-specific analyses find 
heterogeneity to be a rule more often than an exception 
(e.g., De Vos et al., 2017; Gates & Molenaar, 2012; Kim 
et al., 2007). However, while individuals may vary greatly 
from each other in their prototypical dynamics over time, 
some similarities have been consistently identified within 

the literature. For instance, the concept of “inertia” has been 
replicated consistently (Koval et al., 2012; Kuppens et al., 
2010). Methods over the last decade have been developed 
with this purpose in mind and have ranged from fully con
strained models fitted to the “chained” time series of a sam
ple of individuals (e.g., Epskamp et al., 2018) to more 
relaxed methods that characterize groups based on features 
common to a majority of individuals in the sample (e.g., 
GIMME; Gates & Molenaar, 2012).

In the current work, we adapt a popular algorithmic pro
cedure developed in the discrete-time framework: the Group 
Iterative Multiple Model Estimation (GIMME; Gates & 
Molenaar, 2012) procedure, to operate in continuous time. In 
so doing, we introduce a novel contribution to the literature 
that identifies systematic covariations in change processes 
across a sample of individuals with person- and (possibly) 
time-specific time intervals between successive occasions, and 
assist in the construction of group- and individual-level 
dynamic networks henceforth referred to as continuous-time 
GIMME or ct-gimme. Using a continuous-time model as 
the computational backbone, the ct-gimme algorithm read
ily handles methodological concerns that may affect its dis
crete-time counterparts, such as unequal intervals between 
successive measurement occasions, and other identification 
challenges, particularly in determining the directionality of 
contemporaneous cross-process influences.

We provide a review of the original, discrete-time 
GIMME algorithm. Then, we introduce the continuous-time 
extension: ct-gimme. We describe how it is fitted in the 
continuous-time framework, and discuss differences between 
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the original GIMME algorithm and the continuous-time 
form. The proposed changes and alterations naturally motiv
ate the questions which are evaluated in a simulation study 
followed by an empirical illustration that highlights the 
strengths and weaknesses of the proposed algorithm.

Gimme

GIMME is a powerful methodological tool that allows 
researchers to identify group-level commonalities in person- 
specific processes (Gates & Molenaar, 2012). We detail the 
modeling framework from which GIMME is based and pro
vide a brief description of the algorithm to provide context 
for ct-gimme in the following sections.

Modeling in Discrete-Time

The vector autoregression (VAR) is the most utilized statis
tical model in person-specific modeling (Piccirillo & 
Rodebaugh, 2019). VAR models are intuitive as variables at 
one moment in time relate to others at a given lag order 
(L€utkepohl, 2005). For the remainder of this work, we will 
only be concerned with lag-order 1 models. VAR models 
have seen extensive application in the social and behavioral 
sciences ranging from econometrics (L€utkepohl, 2005), 
affective modeling (Chow et al., 2010; De Vos et al., 2017), 
and neuroimaging (Gates & Molenaar, 2012; Wang et al., 
2023). Work with these models has led to key insights relat
ing model parameters VAR-type models to real-world phe
nomena. For instance, “emotional inertia” relates to the 
auto-regressive parameters of a VAR model and describes 
the rate at which a variable returns to its baseline levels 
(Kuppens et al., 2010). Likewise, cross-regression coefficients 
have been used to describe how and why individuals exhibit 
broader forms of “inertia” by means of strongly connected 
dynamics that prevent substantial change (i.e., network 
density; Lydon-Staley et al., 2019; Pe et al., 2015). The 
standard VAR(1) model may be described as follows:

gt ¼ lþ U�1gt−1 þ f�t (1) 

where gt is a p-variate vector of latent variables measured at 
t, l is a p-variate vector of latent intercepts, U�1 is the lag-1 
regression coefficients matrix or transition matrix which 
relates variables at the previous time-point to the current 
time point, and ft is a p-variate residual vector that is 
assumed to be multivariate normally distributed with zero 
means and covariance matrix, W�.1 Notably, the f�g super
script serves as an indicator to differentiate the standard, 
discrete-time VAR from alternative representations intro
duced in the following sections.

The discrete-time GIMME procedure uses an extension 
of the standard VAR introduced in Equation (1) known as 
the structural VAR (SVAR; L€utkepohl, 2005). Formally, we 
may express the SVAR as: 

gt ¼ lþ U0gt þ U1gt−1 þ ft (2) 

where g is a p-variate vector of latent variables measured at 
t, l is a p-variate vector of latent intercepts, U0 is the lag-0 
regression coefficients matrix whose diagonal elements are 
fixed to 0, U1 is the lag-1 regression coefficients matrix or 
transition matrix which relates variables at the previous 
time-point to the current time point, and ft is a p-variate 
residual vector that is assumed to be multivariate normally 
distributed with zero means and a diagonal covariance 
matrix, W:

The SVAR differs from the standard VAR model via the 
inclusion of the contemporaneous effects captured by, U0:

These contemporaneous relations capture effects that 
occurred in the time between two successive measurement 
occasions when all higher-order lags have been accounted 
for (L€utkepohl, 2005). For example, momentary fluctuations 
in emotions at the daily level may indicate that a substantial 
number of associations exist within the U0 matrix. This 
indicates that relations between emotions fluctuate at faster 
time scales than those captured by day-to-day assessments. 
The modeling of contemporaneous relations has been bene
ficial in allowing researchers to model processes that unfold 
faster than the observed time differences between successive 
occasions present in their data (e.g., Dt; Gates & Molenaar, 
2012; Wright et al., 2019).

The GIMME Algorithm

The procedure for GIMME defines a null model for all indi
viduals in a sample where the diagonal elements of the U�1 
matrix (i.e., the AR coefficients) is freed for estimation 
alongside the diagonal elements of the residual covariance 
matrix, W� (Gates et al., 2010; Gates & Molenaar, 2012). 
Following this, the modification indices (MIs; S€orbom, 
1989) for all individuals are assessed and the parameter 
which would improve model fit for a user-specified propor
tion of individuals is added to all individuals. This proced
ure is repeated iteratively until no parameters can be added 
to improve the model fit for all individuals in the sample. 
The models then proceed with individual model fitting via 
the same iterative procedure where their baseline model is 
the group model derived in the previous step. The proced
ure stops when no paths improve model fit or when model 
fit criteria are satisfied (e.g., the Root Mean Squared Error 
of Approximation or RMSEA; Gates & Molenaar, 2012). 
Once paths can no longer be added, paths that are no lon
ger statistically significant are pruned from the models.

GIMME has been extensively applied to the modeling of 
functional connectivity in neuroimaging research (Gates & 
Molenaar, 2012; Henry et al., 2019) where processes may 
unfold many times faster than our ability to sample. 
Further, GIMME’s pooling of the modification indices of 
many subjects has been shown to improve its ability to 
recover individual signal from noise relative to person- 
specific modeling of individual time series (e.g., Gates & 
Molenaar, 2012; Lane et al., 2019; Park et al., 2023). These 
benefits withstanding, some limitations may still affect the 
performance of GIMME. Being formulated in the discrete- 

1An alternative, arguably more popular form of the VAR model with non-zero 
intercepts is structured such that the current deviation from the mean relates 
to previous deviation from the mean as an AR process of lag 1 (i.e., gt − l ¼

U�1ðgt−1 − lÞ þ f�t (e.g., Li et al., 2022; L€utkepohl, 2005)
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time framework and based on the VAR framework, GIMME 
requires that data be equidistant for parameter estimates to 
be accurate and the SVAR parameterization may fail to 
capture group- and subgroup-level dynamic patterns that 
exist within the data (Park et al., 2024). Further, changes in 
the sampling frequency of the data may impact the coeffi
cients and their comparability across studies; that is, the 
parameters obtained from a VAR model are temporally 
dependent (L€utkepohl, 2005; Ryan & Hamaker, 2022). The 
assumption of equally-spaced data-points can be controlled 
for by careful planning of the study design. However, failure 
to satisfy this condition can result in the VAR coefficients 
being a blend of the multiple lags that were contained in 
the sampling intervals (Ryan & Hamaker, 2022). Further, 
the comparability of VAR estimates may be compromised if 
studies use wildly different sampling intervals for the same 
underlying processes (Gollob & Reichardt, 1987; Voelkle 
et al., 2012).

The following section introduces the novel contribution 
of the current work: ct-gimme. We provide a description 
of the model fitting in continuous time and relate it to fit
ting in discrete-time as described above. We then describe 
in detail the algorithm of ct-gimme and additional consid
erations that separate it from its discrete-time counterpart 
and provide motivation for our simulation and empirical 
illustrations.

Continuous-Time GIMME

Modeling in Continuous-Time
An alternative approach for describing processes through 
time is by explicitly modeling their change via continuous- 
time modeling. This framework is powerful in relating 
changes among variables explicitly to changes in their pre
defined time scales (Arminger, 1986; Boker & Graham, 
1998) and is ideal for our implementation of ct-gimme. 
These models can tell us how our current state of depres
sion may be associated with quick or slow changes in our 
resulting anxiety. Continuous-time models have already 
been used in the literature on psychological disorders such 
as depression and antisocial behavior (e.g., Delsing & Oud, 
2008). Continuous processes such as these may be described 
as a set of differential equations that describe how changes 
in one variable may affect changes in another variable. 
These relations can be expressed in the following general 
form:

dgðtÞ ¼ bþ AgðtÞ½ �dt þ GdWðtÞ (3) 

where dg is a p-variate set of differentials in the latent varia
bles, gðtÞ, A is a p� p drift matrix which describes how 
changes in the values of g at time relate to itself and other 
variables, b is a vector of intercepts or home-bases, WðtÞ is 
a vector of process noises (specifically, standard Wiener 
processes) whose changes between any two-time points, 
dWðtÞ, are assumed to be normally distributed with zero 
means and variance-covariances that depend on G and the 
time interval between two time points, Dt and GG0 ¼ Q 

which represents the diffusion matrix (Arnold, 1974; 
Voelkle et al., 2012).

Analytic solutions have been proposed for Equation (3)
to delineate g for any real or integer values of time, includ
ing discrete-time solutions that relate gt to gt−Dt for which 
the time difference, Dt, can only assume integer values (e.g., 
Dt¼1, 2, and so on; Voelkle et al., 2012; Chow et al., 2022; 
Hecht & Zitzmann, 2021a). These exact transformations are 
provided below and allow one to transform elements of the 
general SDE to the equivalent VAR forms presented in 
Equation (1). Given a specified Dt, the mapping between 
the discrete- and continuous-time formulations can be 
expressed as:

U�ðDtÞ ¼ eADt (4) 

W�ðDtÞ ¼ irowfA−1
# eA#Dt − I½ �rowðQÞg (5) 

where A# ¼ A� Iþ I� A; rowð:Þ is a row operator which 
transforms a matrix row-wise into a column vector and 
irowð:Þ is the reverse operation of turning a column vector 
into a matrix, Q is the continuous-time error covariance 
matrix also known as the diffusion matrix (Arnold, 1974; 
Voelkle et al., 2012). Of note is that the sampling interval 
becomes encoded into both the U� and W� matrices at their 
given lag-orders. Thus showing how the parameters of the 
standard VAR are dependent on the sampling interval of 
the data. We provide an illustrative figure in Figure 1, which 
highlights how parameters from the continuous-time model 
transform to those in the discrete-time VAR model 
at Dt ¼ 1 or 10:

The limitations of the discrete-time VAR models are 
addressed by fitting models in the continuous-time frame
work (Chow et al., 2022; Ryan & Hamaker, 2022). 
Continuous-time models can handle irregularly spaced data 
and are not sensitive to the sampling rate of the data 
because of their approximation of the derivatives of the 
underlying processes (Gollob & Reichardt, 1987; Ryan & 
Hamaker, 2022). While a growing body of work has been 
established to ease researchers into interpreting continuous- 
time models (Van Montfort et al., 2018), relatively less has 
work has been done to simplify entry into continuous-time 
modeling. Likewise, beyond a handful of methods, relatively 
few avenues exist for identifying group-level structures in 
individual-level processes in the continuous-time frame
work. Those that do typically fall within multilevel frame
works that impose strict assumptions on the structure of 
individual-level models (e.g., Boker & Graham, 1998; 
Nestler & Humberg, 2021).

The ct-Gimme Algorithm
The general procedure for fitting ct-gimme is presented 
in Algorithm 1. Here, we discuss the algorithm of ct- 
gimme for unsupervised model construction in continuous 
time via modification indices. The use of modification indi
ces has a rich history in both Structural Equation Modeling 
as well as the discrete-time GIMME framework (Gates & 
Molenaar, 2012; Whittaker, 2012). ct-gimme adopts the 
use of modification indices to stay in line with the precedent 
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set by the discrete-time GIMME which has shown reliable 
performance in detecting effects and controlling for error 
inflation (Lane et al., 2019). Here, we focus on the specifics 
of ct-gimme which draws heavily from its discrete-time 
counterpart: GIMME (Gates & Molenaar, 2012). ct-gimme 
is fit in the state-space framework which can be described 
as a set of state and space equations. The state equation, as 
shown in Equation (3), describes the dynamics of the system 
of interest in continuous time. In addition to the state equa
tions are the measurement equations which are described by:

yt, k ¼ Cgt, k þ rt, k (6) 

where yt, k is q-variate vector of observed data of the kth 

measurement occasion at time, t, C is a q� p factor loadings 
matrix which relates latent variables to observed variables 
and is analogous to a factor loadings matrix in the structural 
equation modeling framework, gt, k is the p-variate vector of 
latent variables, and rt, k is a q-variate measurement errors 
with covariance matrix, R: In the implementation for ct- 
gimme, we assume by default that single variables directly 
correspond to single factors. In such a case, C reduces to an 
identity matrix and may be omitted for parsimony.

A user inputs their pre-processed N, p-variate time-series 
and ct-gimme defines a null state-space model to begin 

optimization. By default, the diagonal elements of the drift, 
A, and process noise, Q matrices are freed for estimation 
whereas all off-diagonal elements are fixed to 0.00. The fac
tor loadings, C, are assumed to be diagonal with one item 
loading onto each factor; though, this may be changed at 
the user’s preference to form multi-indicator latent factors. 
Users may specify that the measurement error variances in 
R be freely estimated by using the argument ME¼TRUE, 
with starting values specified via the argument rvals to be 
a vector of p-values, or a single value to be set for all varia
bles. By default, this is disabled and measurement error var
iances are assumed to be near 0.00 (i.e., 1e−5) but can be 
enabled to capture measurement error variances. Finally, 
non-informative initial values are set for the latent variables, 
with zero means and an identity matrix as their covariance 
matrix, but users are encouraged to input their own values 
whenever possible.

When executed, ct-gimme fits the null model specified 
above to all N subjects (see Algorithm 1 for full details). 
Then, modification indices are extracted for all subjects to 
identify the parameter which would improve the model fit 
for a majority of individuals. The discrete-time GIMME 
algorithm used a pre-defined value of 75:0% (Gates & 
Molenaar, 2012). Thus, if a model parameter would improve 

Figure 1. Relating the true CT VAR (A and Q) to the DT VAR at a Dt ¼ 1 (U�1ðDt¼1Þ and W�ðDt¼1Þ) and Dt ¼ 10 (U�1ðDt¼10Þ and W�ðDt¼10Þ). Solid lines indicate posi
tive coefficients while dashed lines indicate negative coefficients. Notably, paths in A become weaker as Dt increases but manifest as covariances in the W� matrices.
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the model fit for at least 75:0% of the sample, then the 
model parameter would be added for all individuals. In the 
case of ct-gimme, the program default is set to 51%: This 
lower setting is to err on the side of discovery of group-level 
structure but can be changed by user specification. Of all 
parameters that pass this “majority criterion” within an iter
ation, the parameter with the largest average modification 
index across all subjects will first be freed up for all subjects 
in the sample, and model fitting will begin again. This pro
cedure repeats iteratively at the group-level until one of the 
stopping criterion is met: 1. The dynamic matrix, A, is full 
or 2. The largest modification index is no longer statistically 
significant for a majority of individuals (suggesting e.g., that 
51% of the sample does not share a path).

Error Inflation
The first stopping criterion for ct-gimme is straight for
ward. A full drift matrix is saturated and no further parame
ters can be added. However, such iterative model 
adaptations through repeated use can lead to inflation in 
Type-I error rates. The discrete-time GIMME has imple
mented corrections for this exact issue by penalizing the 
a-level by the sample size and implementing stopping crite
ria based on model fit (e.g., NNFI, CFI, and RMSEA; Lane 
et al., 2024). However, certain metrics such as RMSEA are 
not straightforward to incorporate in the continuous-time 
framework due to the need to define a saturated model for 
comparison (Oh et al., 2024). To this end, we propose and 
evaluate two avenues for controlling a-inflation in addition 
to serving as feasible stopping criteria for the ct-gimme 
algorithm: 1. An adjusted form of the Benjamini-Hochberg 
correction and 2. Model selection via sample-size adjusted 
Bayesian information criterion (BIC) to reflect the original 
corrections of discrete-time GIMME via direct a correction 
as well as model-based selection via information criterion. 
As these implementations for error inflation are new to the 
GIMME framework in both discrete- and continuous-time, 
these conditions are likewise tested and evaluated in our 
simulation studies in the sections that follow.

Benjamini–Hochberg Correction. The Benjamini–Hochberg 
correction for multiple comparisons is a well-established 
and evaluated method for adjusting the family-wise error 
rate (Benjamini & Hochberg, 1995, 1997) and have been 
shown to be relatively easy to implement and more powerful 
than alternatives such as the Bonferroni method (Thissen 
et al., 2002). Simply, the adjusted Benjamini-Hochberg cor
rection is applied to the a-levels of each test of the modifi
cation indices by becoming progressively more conservative 
with each additional parameter (Benjamini & Hochberg, 
1997, 1995). Formally, the correction can be calculated as: 

i
m

a (7) 

where a is the pre-selected a-level, i is the ranking of a 
given p-value in descending order, and m is the total num
ber of tests being executed. Since ct-gimme operates in a 
model construction framework, the total number of tests 

cannot be known ahead of time. Thus, we constrain 
ct-gimme’s value of m to be the number of freeable 
parameters in the dynamic matrix. Thus, a 5-variate model 
with the diagonal elements fixed to be estimated would 
result in m ¼ 20 total possible tests. Likewise, the ranking of 
each test is taken in sequence. In ct-gimme, the 
Benjamini-Hochberg correction simply replaces the p-value 
of each successive MI until statistical significance is not 
achieved and the resulting model is retained. Once the indi
vidual-model fitting state begins, each subjects’ models are 
estimated iteratively but pick up from the last Benjamini- 
Hochberg adjusted p-value from the group fitting stage. In 
theory, this would result in lower Type-I error rates with a 
possible decrease in power as well (i.e., higher Type-II error 
rates). However, when compared to the discrete-time 
GIMME algorithm’s penalty by sample size, the Benjamini- 
Hochberg correction may be less conservative.

Sample-Size Adjusted BIC. In the absence of fit measures 
for continuous-time models such as RMSEA, we chose to 
make use of the sample-size adjusted BIC (BICn; Sclove, 
1987). Information criterion (IC) based model selection is a 
large field of study and several potential IC measures could 
have served as potential candidates for evaluating model 
performance in ct-gimme. The decision to make use of 
IC-based measures was influenced by work indicating their 
strength over similar model fit indices such as the CFI and 
TLI in the structural equation modeling framework (e.g., 
Bollen et al., 2014). Likewise, the BICn has been shown to 
outperform other IC-based measures that were readily avail
able such as the AIC (Tein et al., 2013). The sample size 
adjusted BIC may be expressed as:

BICn ¼ k ln
nþ 2

24

� �

− 2 ln ðL̂Þ (8) 

where k indicates the number of parameters in the model, n 
is the sample-size, and L̂ represents the maximized value of 
the likelihood function at the estimated parameters. In the 
case of ct-gimme’s implementation in OpenMx, this is 
obtained via prediction error decomposition by means of a 
hybrid Kalman filter approach (Boker et al., 2011; 
Schweppe, 1965). Models with lower BICn’s are preferred 
and–intuitively–this selects models which exhibit the best fit 
to the data scaled by the number of parameters in the 
model and the sample size. The implementation of BICn in 
ct-gimme tracks the BICn for each subject at each param
eter. Once the best candidate MI is not statistically signifi
cant at the a ¼ 0:05-level, 3-additional parameters are added 
based on the highest average MI value across the sample. 
Once these additional 3-parameters are added, the model- 
state that corresponded to the lowest average BICn across 
the sample is selected based on a Convex Hull (CHULL; 
Ceulemans & Kiers, 2006) where:

stk ¼
BICn, ðK−1Þ − BICn, ðKÞ

BICn, ðKÞ − BICn, ðKþ1Þ
(9) 

where stk indicates the model stage at the kth additional par
ameter which is calculated by the ratio of the differences in 
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BICn between the current BICn, ðKÞ and prior, BICn, ðK−1Þ, 
and current versus future, BICn, ðKþ1Þ, model states. This 
procedure was chosen over simply selecting the lowest pos
sible BICn to reduce the possibility of over-fitting due to 
sampling variability, and sensitivity to individual outliers. 
Thus, in theory, this procedure would select the earliest 
model that maximized the improvement to BICn: Once this 
procedure has been performed at the group level, it is 
repeated at the individual level using the person-specific 
BICn, instead of the average BICn: Both the Benjamini- 
Hochberg and BICn corrections can be enabled via standard 
arguments in ct-gimme.

Algorithm 1 CT-GIMME
Input: yt, k, for i ¼ 1, :::, N:
Output: bAi , bQi , for i ¼ 1, :::, N:

Stopping criterion satisfied by meeting ‹ or › or fi 

or fl:
‹ Dynamics matrix, Ai is full
› Largest Modification Index is not statistically signifi
cant for a majority of individuals in the sample
fi If check.BIC¼TRUE, run 3-extra iterations follow
ing largest MI and select model corresponding to best 
BIC relative to model complexity during model search 
procedure
fl If Benjamini.Hochberg¼TRUE, penalize p-value 
scaled by number of parameters added using 
Equation (7)

for i ¼ 1, :::, N do
Initialize continuous-time model with diag(Ai) and 
diag (Qi) free
while stopping criterion not met do
� Fit continuous-time model to all, N individuals
� Obtain MIs
� If in group-stage, check parameter corresponding 

to maximum average 
MI in raw value is statistically significant at v2ð1Þ
for a majority of individuals
� If in individual-stage, check parameter correspond

ing to maximum MI in raw value is statistically 
significant at v2ð1Þ
� If so, free element of the drift matrix, Ai

end
Prune non-significant paths
Begin do loop for each individual with NULL model     

set as the group-level model
end

Methods

Simulation Study

Throughout the design of ct-gimme, several aspects of the 
algorithm had to be adjusted from the original discrete-time 
GIMME. This led to research questions regarding the per
formance of ct-gimme as well as how it may perform 
against alternate approaches for fitting models in either dis
crete- or continuous-time. We begin this section via an 

explicit description of the research questions which motivate 
our simulation study.

Motivating Research Questions

Our motivating research questions (RQs) focused on evalu
ation of the performance of ct-gimme under ideal and 
misspecified conditions, and comparisons of ct-gimme 
against benchmarks in discrete and continuous time. The 
first research question (RQ1) was to compare the different 
model-fitting options for ct-gimme when modeling 
assumptions are met: standard MI, Benjamini-Hochberg 
corrected MI, or BICn selected models across conditions of 
sample size, effect size, and within-sample heterogeneity 
conditions. Upon determination of the best performing ver
sion of ct-gimme, all subsequent RQs only relied on that 
selected criterion. The expectation of RQ1 was that both the 
Benjamini-Hochberg and BICn corrections would outper
form the raw modification index; however, their perform
ance against one another in deriving acceptable models was 
less clear and of interest for the current investigation.

The second research question (RQ2) centered around the 
strengths and weaknesses of continuous-time modeling with 
ct-gimme under model misspecification. We were inter
ested in the performance of ct-gimme in conditions where 
the continuous-time model is either 1. provided with incor
rectly labeled time-intervals which are assumed equidistant 
and 2. incorrectly neglect modeling of measurement errors 
which may impact the quality of resulting parameter esti
mates. Broadly, RQs 1 and 2—broadly—assessed the general 
performance of ct-gimme and validate its characteristics 
in a vacuum.

The third research question (RQ3) introduced compari
sons of ct-gimme to alternative approaches in continuous- 
time that empirical researchers may consider when fitting 
models to real-world data. Namely, 1. strictly N ¼ 1 model
ing and 2. strictly group-based modeling. We evaluated the 
performance of ct-gimme against these two alternative 
approaches for model fitting in continuous time across 
conditions of sample size, effect size, and within-sample het
erogeneity conditions. It was expected that the strictly 
group-based models would outperform ct-gimme when 
samples were homogeneous but perform worse when indi
vidual differences in dynamic network structures were pre
sent but unaccounted for. Likewise, we hypothesized that 
ct-gimme would outperform strictly N ¼ 1 model fitting 
when some groups structures were present due to ct- 
gimme’s ability to pool information at the sample-level 
prior to individual model fitting.

Finally, RQ4 evaluated ct-gimme to discrete-time 
GIMME. One may expect that ct-gimme would outperform 
discrete-time GIMME in instances where the measurements 
were not equally spaced. However, a unique characteristic of 
the original GIMME algorithm is that it is formulated in the 
structural VAR which enables it to model “faster” dynamics 
via the contemporaneous effects. Thus, the degree to which 
ct-gimme might outperform GIMME–if at all–was of inter
est for the current investigation.
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Simulation Design
Data were simulated from the Ornstein-Uhlenbeck (OU) 
model which is a special case of Equation (3) (Oravecz & 
Tuerlinckx, 2011). The OU model can be thought of as the 
continuous-time analogue for a discrete-time VAR model 
with some differences in parameterization. Where A ¼ −B 
indicating the drift matrix and b ¼ Bl where l is a mean- 
vector. For the current work, the means are assumed to be a 
vector of 0’s. Manipulations of the within-sample heterogen
eity in dynamics will alter B: Specifically, all subjects shared 
a common dynamic model when heterogeneity was not pre
sent. When heterogeneity was present, all subjects shared a 
common set of connections in the off-diagonal elements of 
B comprised of 15% of the total available off-diagonal ele
ments. In conditions where within-sample heterogeneity was 
enabled, an additional 10% of off-diagonal paths in B were 
randomly added to each participant. Depending on the 
effect size condition, these cross-process relations may take 
values of either 0.30 or 0.90.

Data were simulated at a temporal resolution of t ¼ 0:1:
When Dt was manipulated, the raw time-series were sub
sampled at the corresponding time intervals (e.g., Dt ¼ 0:50 
or 1.0). When irregularly sampling time-points, time-points 
were sampled from the following scheme: ti ¼

Pi
j¼1ð1þ

DtkÞ where Dtk was assumed to follow a gamma distribution 
with a shape parameter of 2, and a scale parameter of 0.5. 
That is, each subsequent measurement occasion was drawn 
such that it was at least 1-unit in time later plus a randomly 
drawn value from a gamma distribution that was heavily 
concentrated around the value of 1.0. This yielded an 
irregularly spaced sampling structure that was both shifted 
in time as well as random in nature with an average Dt ¼
2:0 but highly skewed. The resulting N-subject time series 
was then fitted to the different modeling frameworks.

For ct-gimme, models were fit in R. Results from using 
different model selection measures were compared for RQ1 
(i.e., under raw MI, Benjamini-Hochberg correction, and 
BICn). Following this, the approach that yielded the best 
overall performance were used to test all subsequent RQs. 
Unless otherwise specified, time-indices were labeled cor
rectly with diagonal elements of the drift and process noise 

variances freed for initial estimation with measurement 
errors freed when the conditions dictated they be freed.

For the strict N ¼ 1 models, continuous-time state-space 
models were fitted to each subject with all drift parameters 
freed for estimation alongside the diagonal elements of the 
process noises. Once the full model was fitted, non-signifi
cant parameters were removed from the models and refitted 
to reflect a naive approach to fitting these models. For the 
strict group-level models, a multi-group model was specified 
in OpenMx where a common, dynamic model was fitted to 
all subjects and parameters in the full drift matrices and 
diagonal elements of the process noise matrices were con
strained to equality. Once a group-level model was fitted to 
the data, the group-level model was pruned and refitted. For 
all other arguments, model configurations were identical to 
ct-gimme. Finally, when discrete-time GIMME imple
mented using the gimme package in R using program 
defaults (Lane et al., 2024) assuming that the time intervals 
were equally spaced. All models across all conditions were 
tested across 500 Monte Carlo replications per condition.

Simulation Conditions
All simulation metrics and their broad rationale are depicted 
in Table 2 by their corresponding research question. Below, 
we detail the specifics of these conditions and relate them to 
our three motivating questions.

The first two parameters in the simulation study which 
were not manipulated or adjusted: sample sizes and network 
sizes. The rationale for fixing these two were because the 
effects of manipulating these variables are well established in 
the literature (e.g., Park et al., 2020, 2023). Notably, manip
ulations of sample size would be more apparent when tak
ing into account subgroups of individuals within the 
broader sample (e.g., Park et al., 2024). However the current 
investigation does not study subgrouping thus the impacts 
were deemed minimal. Likewise, the network size was not 
manipulated for similar reasons. In particular, as the num
ber of estimable parameters increases, the sample sizes 
required to sufficiently estimate them generally increases as 
well; however, given our manipulation of proportions of 

Table 2. Research questions crossed with simulation factors and rationales.

Model Time Effect Size Sampling Rate Heterogeneity Sampling Regularity Measurement Error

RQ1 ct-gimme only 
with: raw MI, 
Benjamini- 
Hochberg, 
and BICn

T ¼ 50 & 100 EF¼ 0.30 & 0.90 Dt ¼ 0.50 & 1.0 No & Yes Regular None

RQ2 ct-gimme with  
BICn

T¼ 100 EF¼ 0.30 Dt ¼ 1.0 No ti ¼
Pi

j¼1ð1þ XjÞ
where  

Xj � cð2, 0:5Þ

j � 0:80

RQ3 ct-gimme with 
BICn model 
selection, N ¼ 1, 
and group-level

T ¼ 50 & 100 EF¼ 0.30 & 0.90 Dt ¼ 0.50 & 1.0 No & Yes Regular None

RQ4 ct-gimme with 
BICn and  
GIMME

T¼ 100 EF¼ 0.30 Dt ¼ 0.50 & 1.0 No ti ¼
Pi

j¼1ð1þ XjÞ

where  
Xj � cð2, 0:5Þ

None

Note: Conditions are enabled during each research question. T ¼ number of time-points per individual, EF ¼ magnitude of cross-process dynamics, Dt ¼ sam
pling rate of true time-series, Heterogeneity can be No/Yes indicating whether individual differences were simulated, Sampling Regularity denotes whether data 
were sampled regularly or irregularly and by what mechanism, Measurement Error denotes if measurement error variances were simulated and the average 
item-level reliability of the simulated data.
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effects, we expected our design to generalize to larger net
works with similar proportions of zero- to non-zero paths.

For RQ1, Time, Effect Size, Sampling Rate, and 
Heterogeneity conditions were manipulated and crossed with 
one another to broadly assess the performance of the differ
ent corrections for ct-gimme when undergoing model 
modification via raw modification indices, the Benjamini- 
Hochberg correction, and BICn: By crossing these factors, we 
were able to assess the performance of the three different 
approaches for handling a-inflation in the model modifica
tion search in different configurations of sample-size, effect 
size, and heterogeneity across sampling rates. In particular, 
sample sizes ranged from 50 to 100 time points, reflecting 
the sample sizes typically seen in empirical applications 
involving time series data (e.g., Fisher et al., 2017; Lane et al., 
2019; Wright et al., 2019). Effect sizes were selected to span 
from nigh undetectable to nearly explosive by means of vary
ing the weights of the cross-process dynamics while keeping 
the centralizing tendencies fixed at −0:50: Sampling rates dif
fered from Dt ¼ 0:50 to 1.00 to mirror conditions with faster 
sampling faster than a unit time interval. Finally, heterogen
eity was simulated at 0% to 10% of cross-process paths being 
randomly added to individual models to simulate cases where 
individual variation was prominent in the dataset.

RQ2 took the best performing argument from RQ1 and 
defined targeted simulations to test how well ct-gimme 
performed under conditions of model misspecification via 
irregularly spaced time-series with [in]correctly labeled 
time-series as well as in conditions where measurement 
errors are present in the data and modeled or ignored. The 
additional factor of regular spacing was sampled from a c 
distribution as noted in the prior section as well as in 
Table 2. This was to simulate a condition where simulated 
participants regularly responded both late (i.e., Dt ¼ 2:0) as 
well as with a non-normally distributed range. Likewise, the 
inclusion of the measurement error variances were meant to 
simulate cases where the true, data-generating process 
exhibits measurement noise that is left unmodeled to assess 
the effects of those measurement error variances on the esti
mated dynamics of the model.

For RQ3, ct-gimme was compared to N ¼ 1 and 
group-level modeling across conditions of Time, Effect Size, 
Dt, and Heterogeneity with regular sampling and no meas
urement errors. These conditions largely matched the broad 
tests of ct-gimme in RQ1 but compared the performance 
of ct-gimme with BICn model selection to the N ¼ 1 and 
group-level conditions to evaluate the performance of ct- 
gimme relative to reasonable alternative approaches for fit
ting models in continuous-time.

Finally, for RQ4 ct-gimme with Benjamini-Hochberg 
correction was compared to the discrete-time GIMME algo
rithm in a targeted set of conditions in the presence of 
irregularly spaced data and different sampling rates to high
light the strengths of ct-gimme.

With the goals of essentially comparing various model 
search procedures in continuous- and discrete-time, there 
are some metrics that should be considered when conclud
ing whether one approach performs “better” or worse than 

others. In what follows, we describe how the data were gen
erated for the simulations then, describe the performance 
measures of the simulation study and how they relate to my 
broad research questions and goals.

Performance Measures
The performance measures for our simulations are pre
sented below and are related to specific research questions 
when appropriate. When comparing the discrete-time 
GIMME algorithm to ct-gimme, we were most interested 
in the performance and recovery of the point-estimates. 
Thus, we assessed measures of Type-I and Type-II error 
rates, bias, and the root mean squared errors (RMSEs). 
Type-I error rates were calculated as:

ah ¼
FPh

TNh þ FPh

(10) 

where h is the parameter estimate, FPh is the number of 
false positives and TNh is the number of true negatives. 
Type-II error rates were calculated as:

bh ¼
FNh

FNh þ TPh

(11) 

where FNh is the number of false negatives TPh is the num
ber of true positives.

Absolute biases were be used to measure the degree to 
which parameter estimates deviated from their true values 
and were derived as:

ABiash ¼
1
H

XH

h¼1
ĥh − h

�
�
�

�
�
� (12) 

where H is the total number of Monte Carlo runs, ĥh is the 
estimated parameter estimate in the hth Monte Carlo run, 
and h is the true parameter estimate. Absolute biases were 
selected over standard biases to avoid relatively minor biases 
that averaged to zero during the simulations.

Similarly, the variance of the parameter estimates needs 
to be accounted for. Thus, RMSEs of the parameter esti
mates were calculated and are given by:

RMSEh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H

XH

h¼1
ðĥh − hÞ

2

v
u
u
t (13) 

Taken together, these performance measures provided 
insight as to how discrete-time GIMME performed relative 
to ct-gimme. To evaluate the quality of the standard error 
estimates, we focused on the ct-gimme, N ¼ 1 modeling, 
and the multigroup-method, all of which returned standard 
error estimates associated with the continuous-time parame
ters. Standard error estimates returned by other discrete- 
time approaches required additional transformations to the 
continuous-time metrics and were not considered in this 
article. We examined the mean of the standard error esti
mates for each parameter as:

SEh ¼
1
H

XH

h¼1

cSEh (14) 
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where SEh is the average of the standard error estimates 
across the Monte Carlo runs. We also computed the stand
ard deviation of the standard error estimates as:

SDðSEÞh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
H − 1

XH

h¼1

cSE
ðhÞ
h − SEh

� �2
v
u
u
t (15) 

where cSE
ðhÞ
h is the estimated standard error for a given par

ameter, h, in the hth Monte Carlo run. Together, these SEh 

and the SDðSEÞh summarized the quality of the standard 
errors in terms of their size and spread across Monte Carlo 
runs.

Results

The Results of the Four Research Questions Are 
Discussed in Detail Using Results from the Monte Carlo 
Simulations

RQ1: Which Model Selection Method for ct-Gimme 
Performs Best?
We focused on elaborating results pertaining to Type-I and 
Type-II error rates because the choice of correction method 
had very little effects on other performance measures when 
the correctly specified continuous-time model was within 
the search spaces of ct-gimme.

Figure 2’s left column displays the Type-I and II error 
rates from the low- and high-effect size conditions at Dt ¼
0:50 for T ¼ 50 and T ¼ 100: The right column highlights 
the same conditions only when Dt ¼ 1:0: Generally, Type-I 
and II error rates were lower with the BICn correction in 

homogeneous samples with the Benjamini-Hochberg correc
tion and raw MI performing comparably to one another 
(both � 0:08 vs � 0:065 for BICn). The Benjamini- 
Hochberg correction and raw MI performed comparably to 
one another in Type-I and II error rates and better than the 
BICn correction indicating that the BICn correction exhib
ited a bias towards model parsimony.

When samples contained heterogeneous dynamics and 
large effect sizes, the Benjamini-Hochberg outperformed the 
raw MI in error rates. These results were expected as the 
adjustments for a under the Benjamini-Hochberg approach 
were more salient toward the end of the search, especially in 
evaluating the statistical significance of parameters freed up 
in the individual models. This is highlighted in Figure 3
which displays the Type-I and II error rates in heteroge
neous conditions when T ¼ 100 and Dt ¼ 1:0 across effect 
size conditions.

These results make sense given the BIC’s tendency to 
prefer model parsimony as well as our use of a CHULL pro
cedure which prefers the configuration of the model which 
best describes the data with the fewest parameters possible. 
Thus, the expectation is that we would have lower power 
due to the conservative bias induced by this procedure. This 
is similar to findings using applications of the CHULL pro
cedure in other dynamic network modeling contexts to find 
subgroups where CHULL methods tended to be more con
servative than alternative approaches (see, Park et al., 2024).

Due to these results, the conclusions for RQ1 are as fol
lows: the BICn-based correction led to the lowest Type-I 
(lower even than the nominal rate of a) and Type-II error 

Figure 2. Type-I and II error rates across sample size (T ¼ 50 and T ¼ 100) when Dt ¼ 0:50 (left column) and 1.00 (right column). MGM: Group-level model, Nis1: 
N ¼ 1 modeling, MI: Raw MI ct-gimme, MInA: ct-gimme with BICn model selection, and MInB: ct-gimme with Benjamini-Hochberg correction. Generally, 
Type-I and II error rates tended to be stable across Dt when the sample-size was held constant with some minor differences across the columns. Notably, the multi
group method exhibited much higher Type-I error rates when T ¼ 50 at a Dt ¼ 1:00 compared to Dt ¼ 0:50:
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rates when samples were entirely homogeneous. In the pres
ence of person-specific variations in dynamic network struc
ture, it still exhibited remarkable Type-I error rates but 
tended to exhibit less statistical power for detecting person- 
specific dynamics. The Benjamini-Hochberg correction 
yielded Type-I error rates that were closer to the nominal 
level compared to raw MIs and showed higher power than 
the BICn correction in the presence of person-specific varia
tions. Thus, the general recommendation would be to use 
BICn if parsimony is the key goal, or when groups are 
expected to be relatively homogeneous. In situations with 
person-specific variations, the Benjamini-Hochberg correc
tion might be preferred. Both of these model selection 
approaches showed improvements over raw MIs. To address 
other remaining research questions (i.e., RQs 2-4) we used 
only the BICn as the model selection procedure in light of 
its lower Type-II error rates (i.e., higher power or sensitiv
ity), especially under smaller T and effect size conditions.

RQ2: How Does ct-Gimme Perform in Misspecified 
Conditions of Time and Measurement?
ct-gimme handles these issues well when correctly speci
fied with shortcomings when either measurement errors or 

sampling intervals are neglected or incorrect. Table 3 high
lights conditions where ct-gimme was tested against itself 
under these two special conditions. First, in the presence of 
measurement error variances and second when sampling 
intervals were irregular and skewed.

RQ2 utilized T ¼ 100 time points per subject with small 
effect sizes (EF ¼ 0:30) for the cross-process dynamics and 
a fixed Dt ¼ 1:0 under the measurement error condition. 
These configurations were identical in the case of the irregu
larly spaced condition, except that Dt was no longer fixed. 
Instead, Dt was either set at the correct person- and time- 
varying values, or ignored and labeled as equidistant with a 
Dt ¼ 1:0: We present the results of RQ2 in two broad sec
tions now.
ct-gimme had the option for measurement errors 

either enabled or disabled to effectively model the measure
ment errors variances simulated in the true data. Our simu
lations indicated that accounting for measurement errors led 
to substantial reductions in the absolute biases for the diag
onal elements of the dynamics (e.g., ABiasME ¼ 0:09 vs 
ABiasNo ME ¼ 0:23). This reduction for the diagonal ele
ments of the dynamics was reflected as well in the RMSEs 
(e.g., RMSEME ¼ 0:12 vs RMSENo ME ¼ 0:25) and the stand
ard errors (e.g., SEME ¼ 0:11 vs SENo ME ¼ 0:17). While not 

Figure 3. Type-I and II error rates across homogeneity (HO/HE) conditions crossed with effect size (EF¼ LO/HI) when T ¼ 100 and Dt ¼ 1:0: dashed line indicates 
the expected nominal rate for Type-I error and an acceptable threshold for Type-II error at 0.10 or 90% power. MGM: Group-level model, Nis1: N ¼ 1 modeling, MI: 
Raw MI ct-gimme, MInA: ct-gimme with BICn model selection, and MInB: ct-gimme with Benjamini-Hochberg correction.
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reported explicitly, failing to account for the measurement 
errors also led to pronounced biases in the process noise 
variances. The off-diagonal elements of the drift matrices 
were not as affected by failure to account for the measure
ment error variances. Finally, the Type-I and II error rates 
did not substantially differ between ct-gimme with and 
without estimated measurement error variances 
(ErrorType−I ¼ 0:048; ErrorType−II ¼ 0:001 vs ErrorType−I ¼

0:045; ErrorType−II ¼ 0:000 for ct-gimme without estimated 
measurement errors). These results agreed with the extant 
literature regarding neglect of measurement errors and their 
corresponding effects. In our simplistic example with only 
measurement error variances, the most prominent effects 
occurred along these diagonal elements of the dynamics and 
process noise variances but in more complex scenarios, 
neglecting measurement errors may results in more substan
tial down-stream effects on the cross-processes as well (e.g., 
Schuurman & Hamaker, 2019).
ct-gimme performed well when the data-generating 

OU models were sampled at irregular intervals and fitted to 
the data at correctly specified time intervals (labeled hence
forth as information restrictions or IR). Compared to results 
with misspecified time intervals (abbreviated henceforth as 
no IR), correct specification of the time intervals yielded 
lower absolute biases for the diagonal elements of the 
dynamics (i.e., ABiasIR ¼ 0:11 vs ABiasNo IR ¼ 0:54) as well 
as the off-diagonal elements (i.e., ABiasIR ¼ 0:03 vs 
ABiasNo IR ¼ 0:07). This pattern was reflected in the RMSEs 
for the diagonal (i.e., RMSEIR ¼ 0:15 vs RMSENo IR ¼ 0:91) 
and off-diagonal (i.e., RMSEIR ¼ 0:07 vs RMSENo IR ¼ 0:21) 
elements of the drift matrices. Similarly, the standard errors 
were better when ct-gimme modeled the correct time 
rather than assuming equally-spaced intervals between suc
cessive measurement occasions for diagonal (SEIR ¼ 0:24 vs 
SENo IR ¼ 0:69) and off-diagonal (SEIR ¼ 0:02 vs 
SENo IR ¼ 0:04) elements of the drift matrices. Consistent 
with results from the continuous-time literature (Chow 
et al., 2016), misspecification of the time intervals lead to 

higher biases and lower efficiency in the point estimates. 
The Type-I and II error rates were not affected strongly by 
this misspecification. This lack of differences suggested that 
the presence/absence of signals relative to noise could still 
be recovered reasonably under the misspecification magni
tudes considered although the signs (e.g., polarity) and qual
ity (e.g., bias) of those estimates tended to deviate further 
from their true values. Likewise, when Dt was manipulated 
from 0.50 to 1.00, minor differences were observed in the 
performance of many of the continuous-time models (see 
Figure 2). Still, the various options of ct-gimme per
formed consistently across different effect size, Dt, and T 
conditions. For the same T and Dt, all approaches tended 
to perform similarly with respect to Type-I and II error 
rates regardless of whether they were in the low or high 
effect size conditions.

Overall, the results indicate the following conclusions: 
First, ct-gimme’s ability to model measurement errors can 
lead to substantial reductions in biases of the point esti
mates when measurement errors are present. Our simula
tions only considered measurement error variances in the 
true, data-generating models; however, when measurement 
error covariances are more complex, these can lead to sub
stantial differences in the modeling outcomes and dynamics 
(e.g., Schuurman & Hamaker, 2019). Thus, the ability to 
model and account for these errors in ct-gimme is a sig
nificant benefit. Second, when ct-gimme was fitted with 
correct temporal labeling we found improvements in the 
quality of all dynamic parameters in terms of both bias, 
RMSE (e.g., variation), as well as the standard errors of 
these estimates. Broadly, the conclusions of these simula
tions highlight and reinforce the strengths of modeling in 
continuoustime as well as with ct-gimme. Despite requir
ing the estimation of 5-additional parameters (i.e., the meas
urement error variances), ct-gimme with measurement 
errors outperformed its misspecified counterpart assuming 
no measurement errors. Similarly, by accounting for the 
true temporal sequencing of events, ct-gimme could 
derive the true, data-generating process better than if data 
were assumed equidistant when they were not. Thus, our 
recommendation would be to enable measurement errors in 
ct-gimme when feasible as allowed by sample size as well 
as collecting explicit information reflecting the time elapsed 
between successive occasions.

RQ3: How Does ct-Gimme Perform Against Strictly N ¼
1 and Group-Level Modeling?
Generally, quite well; although this is context dependent. 
The full extent of comparisons between ct-gimme, per
son-specific modeling (i.e., N ¼ 1), and group-level model
ing may be found in Table 4. Here, we provide a direct 
discussion of selected results and comparisons.

In homogeneous conditions ct-gimme did not outper
form the group-level method on nearly any performance 
metric but consistently outperformed the person-specific 
approach. In the HO/HI/T100/DT1 condition in Table 4, 
the group-level model exhibited the smallest biases 
(ABiasMGM ¼ 0:04) when compared to either ct-gimme 

Table 3. Simulation results comparing measurement error and irregular sam
pling through time.

Measurement Error Irregularly Sampled

Modeled  
ME

Ignored  
ME Correct Dt Wrong Dt GIMME

AR Bias 0.090 0.234 0.110 (0.063) 0.535 (0.235) - (0.240)
CR Bias 0.014 0.015 0.025 (0.015) 0.065 (0.020) - (0.027)
AR RMSE 0.116 0.247 0.154 (0.082) 0.914 (0.253) - (0.266)
CR RMSE 0.041 0.043 0.073 (0.041) 0.206 (0.048) - (0.066)
AR SE 0.111 0.165 0.236 0.686 –
CR SE 0.012 0.013 0.021 0.044 –
AR SD.SE 0.029 0.012 0.096 12.549 –
CR SD.SE 0.026 0.027 0.044 0.528 –
Type-I 0.048 0.045 0.049 (0.137) 0.049 (0.145) - (0.058)
Type-II 0.001 0.000 0.009 (0.013) 0.007 (0.008) - (0.344)

Note: AR - indicates diagonal elements of the dynamics while CR indicates off- 
diagonal values. RMSE is the root mean squared error, SE is the standard 
error, SD.SE is the standard deviation of SEs, and Type-I and Type-II indicate 
error rates. Values in parentheses indicate values for performance metrics 
when transformed to the VAR(1) metric. Hyphens indicate values that were 
not calculated. For instance, standard errors for GIMME would need to be 
transformed from the SVAR to VAR metric and were beyond the scope of this 
simulation study.
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(ABiasctg ¼ 0:10) and N ¼ 1 modeling (ABiasN¼1 ¼ 0:10). 
These results were reflected for all other metrics. However, 
ct-gimme performed well with Type-I and Type-II 
error rates with (TypeI ¼ 0:03; TypeII ¼ 0:02) which 
were comparable to the group-level approach 
(TypeI ¼ 0:06; TypeII ¼ 0:01) than N ¼ 1 approaches 
(TypeI ¼ 0:07; TypeII ¼ 0:003). This pattern was consistent 
across T as well. In the low-effect size conditions (e.g., HO/ 
LO/T100/DT1), error rates in ct-gimme exceeded that of 
N ¼ 1 approaches (TypeI ¼ 0:05; TypeII ¼ 0:02 compared to 
(TypeI ¼ 0:06; TypeII ¼ 0:035). These improvements over 
the N ¼ 1 approach manifested in reductions in biases and 
RMSEs for the cross-process effects with ABias ¼
0:028, RMSE ¼ 0:080 for ct-gimme and ABias ¼
0:041, RMSE ¼ 0:104 for N ¼ 1 (see condition HO/LO/ 
T100/DT1 in Table 4). Logically, when all subjects entirely 
share their dynamic structure, modeling them as a homoge
neous group will leverage all of their collective information 
to improve parameter estimation. Similarly, ct-gimme 
outperforming the N ¼ 1 approaches highlighted the unique 
strengths of the GIMME-like approach. By pooling the 
modification indices, ct-gimme could delineate signal 
from noise better than single-subject modeling could. In 
particular during simulation conditions with smaller effect 
sizes; a finding well established with discrete-time GIMME 
(Gates & Molenaar, 2012).
ct-gimme highlighted its strengths when samples were 

comprised of a common, group-level structure with individ
ual differences. ct-gimme exhibited excellent Type-I and II 
error rates (TypeI ¼ 0:07; TypeII ¼ 0:09) compared to both 
N ¼ 1 modeling (TypeI ¼ 0:09; TypeII ¼ 0:01) and the 
group-level methods (TypeI ¼ 0:40; TypeII ¼ 0:21; see 
Figure 3). The expectation was that N ¼ 1 models should 
exhibit consistent performance across conditions of homo
geneity and heterogeneity since group-level information was 
not being accounted for. Despite minor deviations in Type-I 
and Type-II error rates, this expectation was met with fluctu
ations likely being to the additional parameters being esti
mated in heterogeneous conditions. The presence of any 
degree of heterogeneity in the dynamic structures resulted in 
inflated absolute biases for the group-level method on the 
diagonal (ABiasMGM ¼ 0:20) and off-diagonal dynamics 
(ABiasMGM ¼ 0:15) when compared to ct-gimme 

(ABiasctg ¼ 0:11; ABiasctg ¼ 0:06) or the N ¼ 1 approach 
(ABiasN¼1 ¼ 0:10; ABiasN¼1 ¼ 0:05). While the homoge
neous conditions favored the group-level model, all heteroge
neous conditions across Dt, Effect Size, and Time highlighted 
the flaws in assuming common structures throughout the 
sample. These results highlighted the strengths of the N ¼ 1 
approaches; however, these advantages only held when effect 
sizes were relatively large (i.e., EF ¼ 0:90). When EF ¼ 0:30, 
the N ¼ 1 modeling approaches became far less powerful 
(i.e., TypeII ¼ 0:36) and in-line with the group-level modeling 
approaches (TypeII ¼ 0:33). Overall, ct-gimme performed 
the best in terms of statistical power (TypeII ¼ 0:21) while 
still achieving a near-nominal Type-I error rates of 4.8%. 
Logically, the group-level method was expected to perform 
poorly as the presence of individual differences in dynamics 

leads to “forcing” dynamic parameters onto individuals that 
did not need them because they are present for others in the 
sample.
ct-gimme exhibited poorer performance with smaller 

sample sizes (i.e., T ¼ 50 vs T ¼ 100). Notably, the biases of 
the point estimates for the homogeneous condition with 
low effect sizes only changed from 0.170 to 0.115 when 
transitioning from T ¼ 50 to T ¼ 100, respectively. 
However, ct-gimme maintained high power even with as 
few at 50-measurement occasions (T50Type−II ¼ 0:16 vs 
T100Type−II ¼ 0:02). While a substantial increase compared 
to the 100-measurement occasion condition, ct-gimme 
performed substantially better than the person-specific 
approach, (T50Type−II ¼ 0:62).

One condition did not align with expectations; that is, 
the results for the Type-I error rates for the group-level 
model in condition HO/HI/T50/DT1. In this condition–illus
trated in Figure 3–the Type-I error rates for the group-level 
model were substantially higher than the nominal level (e.g., 
� 14%). Closer inspection of modeling results revealed a 
small number of spurious paths that emerged in the group- 
level models at relatively small magnitudes (e.g., � 0:09). 
These spurious paths tended to emerge when the processes 
were close to the boundary of being unstable (showing 
increasing deviations from the baseline of 0). As an 
example, Figure 4 highlights two time series of the same 
variable for the same subject but in different configurations 
of effect size (i.e., low versus high). Of note, the higher 
effect size condition–while mathematically stationary–still 
exhibits a greater degree of variation over time. When these 
time series are then compared across multiple subjects, add
itional patterns could potentially emerge that appear to be 
caused by “phantom” paths or dynamics.

Ultimately, the results of RQ3 indicated that ct- 

gimme’s performance is situated between that of N ¼ 1 
modeling and group-level modeling. When researchers can 
assume dynamic structures are homogeneous across sam
ples, the group-level modeling approach will provide the 
best results across all performance metrics applied in our 
simulation studies across any configuration of sample size, 
effect size, and Dt: However, instances where complete 
homogeneity exists in dynamic modeling are not commonly 
seen in empirical applications of dynamic networks (e.g., De 
Vos et al., 2017; Ebrahimi et al., 2024; Hamaker et al., 2005; 
Park et al., 2023; Wright et al., 2019). Likewise, we saw that 
N ¼ 1 modeling approaches did well when samples were 
heterogeneous and effect sizes were large; however, the per
formance of the N ¼ 1 procedures did not significantly out
perform ct-gimme. In contrast, when effect sizes were 
smaller, the N ¼ 1 approaches were eclipsed by ct-gimme 
in terms of statistical power via its ability to leverage infor
mation across the samples.

RQ4: How Does ct-Gimme Perform Against Discrete- 
Time GIMME?
Generally, quite well. Comparisons between the parameter 
estimates of ct-gimme and GIMME were compared on 
the metric of the standard VAR(1) by transforming both the 
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OU models and SVAR models to the VAR(1) metric using 
transformations described in Equation (4). Note that such 
transformations were not necessary for inferential purposes 
within the ct-gimme framework per se, but were done only 
to facilitate comparisons of estimates from the two GIMME 
approaches under a common model.

When data were measured irregularly, ct-gimme 

(ABias ¼ 0:06, RMSE ¼ 0:08) outperformed the discrete- 
time GIMME in terms of absolute biases and RMSEs when 
placed upon the common metric of the VAR(1) 
(ABias ¼ 0:24, RMSE ¼ 0:03; see parenthetical values in 
Table 3). The cross-process effects exhibited similar patterns 
for ct-gimme (ABias ¼ 0:02, RMSE ¼ 0:04) compared to 
GIMME (ABias ¼ 0:27, RMSE ¼ 0:07). These results indi
cated that parameter estimates for discrete-time GIMME 
tended to be more biased and varied than those from ct- 
gimme. Interestingly, discrete-time GIMME’s performance 
was similar to ct-gimme with incorrect coding for the 
time-intervals (i.e., Dt) in terms of ABiases and RMSEs. 
These results highlight the unique strengths of modeling 
processes in the continuous-time framework where account
ing for irregular spacing between data-points may yield sig
nificant biases (e.g., � 3:81� greater) when spacing between 
measurement occasions is neglected.

GIMME outperformed the ct-gimme algorithm in 
terms of Type-I error rates (5.8% compared to 13.7% for 
ct-gimme), however. As a trade-off GIMME exhibited less 
power compared to ct-gimme with Type-II error rates 
approaching 34% compared to 1.3% for ct-gimme. This is 
in line with prior work that suggests that the false-positive 
rate for GIMME tends to be good (Gates & Molenaar, 2012) 

while exhibiting low power in the presence of weak dynam
ics (Nestler & Humberg, 2021).

To elucidate the higher Type-I error rates of ct-gimme 
relative to GIMME in the VAR metrics, we show below the 
raw and transformed values for the drift matrix in ct- 
gimme. The inflated Type-I error rates for ct-gimme can 
be explained by nature of the transformations required to 
transform the continuous-time VAR to the discrete-time 
form. Take for instance a true matrix, A, and its discrete- 
time transform at Dt ¼ 1:0:

A ¼

−0:50 0:00 0:00 0:00 −0:30

0:00 −0:50 0:00 0:00 0:00
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(16) 

Then, see a similar transformation for an estimated 
dynamics matrix, Â, and its discrete-time counterpart:

Figure 4. Visualization of single trajectory in low- and high-effect size conditions. While both processes are stationary the “wandering” in the high effect size condi
tions may have resulted in pronounced Type-I errors in the group-level models.
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Â ¼
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In this illustrative case, a misspecification of 2-parameters 
yields 4-incorrect, non-zero parameters when transformed 
to the discrete-time case which are highlighted in bold.

These results indicated that the ct-gimme algorithm 
performed well when compared to GIMME in discrete-time; 
however, GIMME does exhibit strong performance with 
respect to its false discovery rate by maintaining a near 
nominal Type-I error rate (i.e., 5.8%) even when modeling 
abnormally sequenced time-series.

Broad-Level Simulation Conclusions

Our simulations highlighted the strengths and weaknesses of 
the new ct-gimme algorithm in a vacuum as well as more 
broadly against alternative methods in continuous- and dis
crete-time. Notably, of the adjustment options integrated 
into ct-gimme, the BICn model selection criterion outper
formed the raw MI approach and the Benjamini-Hochberg 
corrections in homogeneous conditions. With heterogeneity 
in dynamics, the Benjamini-Hochberg performed better in 
terms of both Type-I and Type-II error rates; thus, gener
ally, ct-gimme’s BICn procedure may be preferable when 
groups are considered more homogeneous and the 
Benjamini-Hochberg correction when samples are suspected 
to be more heterogeneous in favor of discovery of dynamic 
structures.

Our validations of ct-gimme indicated strong perform
ance. By developing ct-gimme in the state-space frame
work, options for integrating and estimating measurement 
errors are readily allowed and our simulations indicated that 
neglecting to incorporate them into the continuous-time 
models biased our centralizing tendencies. Likewise, when 
data were sampled from a skewed distribution to simulate 
unequally spaced data, we found that explicitly modeling 
the time differences resulted in notable improvements to all 
dynamic parameters in terms of their accuracy and 
confidence.

Likewise, ct-gimme possessed the strengths of both 
N ¼ 1 and group-level modeling procedures with few of 
their drawbacks. Across homogeneous conditions, the 
group-level fitting outperformed ct-gimme and N ¼ 1 

modeling. However, in heterogeneous conditions, ct- 

gimme outperformed both N ¼ 1 and group-level modeling 
when effect sizes were relatively weak; a situation more 
likely to be encountered in the social and behavioral scien
ces. By leveraging information from the whole sample to 
identify common features prior to estimating person-specific 
dynamics, ct-gimme almost unilaterally outperformed the 
N ¼ 1 approach on metrics of bias, variance (RMSE), qual
ity of the parameter estimates (SEs), and Type-I/II error 
rates. This advantage held even in the presence of individual 
differences in dynamics. Likewise, the presence of individual 
differences in dynamics posed a unique challenge for the 
group-level approach which assumes a common dynamic 
pattern for the entire sample. This often led to the group- 
level approach performing quite poorly in configurations 
involving any degree of within-sample heterogeneity. By 
contrast, ct-gimme’s tended to remain much more stable 
between homogeneous and heterogeneous conditions.

Finally, when compared to the discrete-time GIMME 
algorithm, ct-gimme performed well–particularly in con
ditions when data were irregularly spaced as is to be 
expected by modeling in continuous-time. However, ct- 
gimme did exhibit higher Type-I error rates in relation to 
GIMME possibly as a result of the nature of how the con
tinuous-to-discrete transformation operates.

Empirical Illustration

Modeling Dynamics
For our empirical illustration, we leveraged data taken from 
Fisher et al. (2017). These data were selected due to past 
work fitting discrete-time GIMME-methods to this dataset 
providing avenues for comparisons between ct-gimme 
and past results. We fitted ct-gimme to symptom state- 
level data and evaluated the continuous-time dynamic net
works. We expected that the ct-gimme would identify 
group-level structures in the continuous-time dynamics 
should they be present. We also compare the results 
obtained from the discrete-time literature on the same data 
to highlight any differences from fitting the models in this 
new framework.

Sample
Data were comprised of N ¼ 40 participants with clinical- 
levels of generalized anxiety disorder (GAD), major depres
sive disorder (MDD), or comorbid GAD and MDD. The 
sample was majority female (nfemale ¼ 26) and White 
(nWhite ¼ 19). A full description of the sample and its char
acteristics may be found in Fisher et al. (2017).

Measures
Participants in the study were assessed over � 30 days and 
responded to 21-items of mood and anxiety symptoms 4- 
times a day. Symptoms were drawn from the Diagnostic 
and Statistical Manual of Mental Disorders, Fifth edition for 
GAD and MDD. Items participants responded to included: 
down and depressed, hopeless, loss of interest or pleasure, 
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worthless or guilty, worried, and restless. Participants were 
asked to rate from 0 to 100 their experience of each item 
since the previous measurement occasion. For instance, a 
participant may rate the degree to which they felt “hopeless” 
from 0 to 100.

Measurement occasions were random and exact time- 
codes were provided in the dataset on an hourly-basis. 
Hourly times were transformed to indices denoting the 
hourly-time difference from the initial measurement occa
sion and divided by 24. This implied that a Dt ¼ 1:0 is asso
ciated with a daily measurement occasion. This allowed for 
sufficient density in measured time-points for each partici
pant. When the gap between any two subsequent measure
ment occasions was larger than one third of a day, empty 
rows were inserted into the dataset for each participant.

For the illustration, 5-symptoms were selected to match 
the network size of our simulations. These symptoms were: 
Irritable, Fatigue, Concentration Difficulties, Rumination, and 
Avoiding Activities.

On average, participants completed 130.43 (SD ¼ 19:27) 
reports with a range of 87 to 212 completed reports. Data 
were preprocessed by methods detailed by Fisher et al. 
(2017) and gathered second-hand. Additional preprocessing 
was done in the current study by within-person and within- 
variable standardizing each variable’s scores.

Model Fitting
A group-level continuous-time model was fitted to the N 
p-variate time-series in R using the OpenMx package. All 
subjects were constrained to equality on all dynamic param
eters, process noise variances, and measurement error var
iances. These parameters were also were freed for estimation 
at the group-level. Once completed, the process noise and 
measurement error variances were extracted from the model 
output and used as the rational starts from which ct- 
gimme would begin estimation.
ct-gimme was fitted to the N p-variate time-series in R. 

Program settings were set to default with the BICn adjust
ment selected based on its performance in our earlier simu
lation results. If the performance based on BICn was not 

sufficient (i.e., not finding a common, group-level structure), 
the Benjamini-Hochberg correction for family-wise a would 
be used instead as it was found to exhibit more power in 
heterogeneous samples. Process noise and measurement 
error variances were fixed to values obtained during the 
group-level modeling stage to serve as rational starting val
ues. For this illustration, measurement error variances were 
fixed but process noise variances were freed for estimation 
for each subject. Group-level paths were determined using a 
threshold of 51.00% to err on the side of discovery.

The results of ct-gimme yielded a set of participants 
with estimable models which represented � 45% of the 
sample. The remaining � 55% of the sample encountered 
issues relating to model convergence, specifically relating to 
the recovery of the standard errors for their dynamic 
parameters and/or process noise variances. We detail the 
dynamics and characteristics of participants with converged 
results. Following this, we provide a brief summary of, and 
some speculations of the reasons for non-convergence to 
facilitate future developments of ct-gimme.

A common, group-level structure was not found by ct- 
gimme when using the BICn model selection procedure. To 
err on the side of discovery, we implemented the 
Benjamini-Hochberg correction which exhibited higher 
power when samples were heterogeneous and a common, 
group-level structure still did not emerge. This indicated a 
high degree of heterogeneity in the person-specific networks. 
Figure 5 displays the continuous-time dynamic network 
structures of 3-randomly selected participants whose 
dynamics pose interesting theoretical possibilities. All three 
participants exhibited strong, excitatory relations from 
Concentration Difficulties to Avoiding Activities. This indi
cated that greater difficulty concentrating was associated 
with increased avoidance of activities. Likewise, all centraliz
ing tendencies were strongly negative indicating that each 
symptom tended to decay in severity with time. 
Interestingly, Participant No. 12 exhibited Fatigue as a core 
symptom which would cause several downstream effects 
(i.e., greater fatigue led to greater irritability but less concen
tration difficulties leading to less avoidance of activities). In 
contrast, Concentration Difficulties was more influential for 

Figure 5. Continuous-time dynamic networks for 3 randomly selected participants. Blue edges indicate excitatory dynamics and red edges indicate inhibitory 
dynamics. Centralizing tendencies (self-looping) were forced to be freed for estimation for all participants.
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Participant No. 15 with greater levels of difficulty being 
associated with greater irritability, rumination, and activity 
avoidance. Finally, Participant No. 21 exhibited a feedback 
loop where high levels of Concentration Difficulties were 
associated with avoidance of activities which would then 
lead to greater rumination which would then suppress con
centration difficulties.

One of the strengths of modeling in continuous-time is 
the ability to translate the continuous-time dynamic struc
ture to different intervals of time to see what the relations 
between variables looks like at various practical intervals 
(Driver & Voelkle, 2018; Ryan et al., 2018). Likewise, these 
transformations can be used to inform future work for iden
tifying optimal time-scales to maximize the likelihood of 
detecting effects (Hecht & Zitzmann, 2021a). Figure 6 high
lights the discretization of Participant No. 12’s continuous- 
time dynamic network into hourly, bi-daily, daily, and 
weekly dynamic networks. The transformations indicate 
that–on an hourly basis–Participant No. 12’s dynamics are 
largely inertial (Kuppens et al., 2010). That is, symptoms 
did not tend to influence other symptoms on an hour-by- 
hour basis and–instead–were regulated by themselves in the 
prior hour. For instance, feeling fatigue an hour ago would 
highly relate to fatigue at the current moment but fatigue an 
hour ago wouldn’t be strongly predictive of irritability now. 
The cross-process dynamics begin to show prominence 
when transformed to a bi-daily (12-hour) schedule. The 
model indicates that fatigue for Participant No. 12 was 
related to greater irritability and lower activity avoidance and 

concentration difficulties 12-hours later. On a daily basis, the 
connection between fatigue and irritability becomes even 
stronger indicating that fatigue today would be strongly asso
ciated with irritability the following day in addition to other 
downstream effects. Finally, at a weekly scale, the strongest 
influence that remains is between fatigue and irritability sug
gesting that fatigue exhibits fairly long-lasting impacts on 
Participant No. 12’s irritability from week-to-week.

These results highlight an important connection to dis
crete-time applications conducted on this same dataset by 
Fisher et al. (2017). Notably, both applications highlighted 
significant heterogeneity in the temporal dynamics across 
the participants. In our applications, no dynamic patterns 
were present for more than 51% of the sample. Likewise, in 
their larger network application, Fisher et al. (2017) noted 
that the heterogeneity in the data indicated that the disor
ders under investigation may be “too great” to limit to a 
purely nomothetic nosology of clinical psychopathology. 
While symptom states in both applications were meaningful 
across both ct-gimme and in work by Fisher et al. (2017), 
the key difference lied in how those symptoms affected 
other symptoms in the network. As noted above, 
Concentration Difficulties was influential in all three of our 
randomly selected participants; however, the down-stream 
effects of Concentration Difficulties were largely heteroge
neous even across our own sample.

As noted, we encountered convergence issues in a subset 
of the participants. Closer inspection suggested that one par
ticipant exhibited a dramatic shift in their dynamic 

Figure 6. Discretized dynamic network of participant No. 12 at different Dt configurations of 0.042, 0.50, 1.00, and 7.00 indicating hourly, bi-daily, daily, and 
weekly relations among the five symptoms, respectively. Blue edges indicate positive associations between variables at one moment in time and the next. Red 
edges indicate negative associations. Self-loops indicate the effect a variable has on itself at a subsequent time.
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processes roughly halfway through the study period (Figure 
7). Specifically, Participant No. 5 exhibited dynamics with 
periodic rises and falls in their symptom levels but following 
the halfway mark, the participant switched to exhibiting a 
floor effect with significantly less variation on all 5 symp
toms used in this investigation. This type of change or alter
ation in dynamics may be characterized as a regime change. 
These regime changes can be modeled explicitly in the con
tinuous-time framework (e.g., Chow et al., 2018); however, 
this was beyond the scope of the application.

Likewise, we found that person-specific estimation of the 
measurement error variances could differ dramatically from 
the measurement error variances derived from the group- 
level model. Given the observation that individuals were 
largely heterogeneous in their dynamic network structures, 
it should come as no surprise that the measurement error 
and process noise variances would be person-specific as 

well. When we attempted to model both the measurement 
error and process noise variances, we ran into additional 
convergence issues likely relating to the relatively small sam
ple-size in the study and the number of parameters being 
estimated. Thus, the compromise was to keep the fixed 
measurement error variances in favor of process noise var
iances for the purposes of this illustrative example. Further 
work and development needs to be conducted in order to 
allow for ct-gimme to dynamically evaluate when process 
noise, measurement error variances, or both can be freed 
for individuals and prioritize the quality of those estimates 
in addition to recovery of the dynamic parameters.

The empirical illustration highlighted several substan
tively interesting features across a select group of partici
pants as well as the technical challenges that need to be 
addressed for widespread adoption and proliferation of these 
complex continuous-time models. Results of the three 

Figure 7. Time series of participant No. 5 for all variables. Notably, participant seems to exhibit a distinct change or alteration to their dynamics around halfway 
through the study.
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selected participants indicated high centralizing tendencies 
for variables such as Concentration Difficulties and 
Rumination with relatively weaker centralizing tendencies 
for variables such as Fatigue and Irritability. When trans
lated to a discrete-time analogue, this implies that feelings 
of Fatigue and Irritability tend to exhibit high “inertia” (i.e., 
high autoregressive terms; see Figure 6). Indeed, for 
Participant No. 12, this implies that feelings of Fatigue and 
Irritability tend to persist for long periods of time, take lon
ger to recover from, and exhibit extensive connections to 
other variables in their dynamic networks affecting their 
Concentration and Avoidance of activities. These results 
aligned with prior findings conducted in the discrete-time 
framework using the same dataset (see Fisher et al., 2017). 
The results of ct-gimme also aligned with other results 
from Fisher et al. (2017) as noted above such as the pres
ence of large degrees of heterogeneity in dynamic patterns 
underscoring the relative consistency between the two stud
ies in both the discrete- and continuous-time frameworks.

Participant No. 15 exhibited significant dependence of 
Irritability, Activity Avoidance, and Rumination on 
Concentration Difficulties. This implies that this participant– 
when faced with difficulties concentrating–tends to become 
more irritable, avoids activities more, and becomes more 
ruminatory. Recent literature has attempted to identify 
bridge symptoms (Jones et al., 2021). These symptoms may 
be indicative of symptoms or variables that are highly influ
ential to the state of the overall network; particularly in the 
case of symptoms networks of multiple disorders. In the 
case of Participant No. 15, it becomes evident that the state 
of their dynamics relies heavily on Concentration Difficulties 
and may serve as a valuable target for intervention in future 
investigations.

Additionally, the failure for several subjects to success
fully converge highlighted key weaknesses and areas to 
improve upon the ct-gimme algorithm and how it initial
izes person-specific models in particular when estimating 
both measurement error variances and process noise varian
ces. In addition, the process of fitting ct-gimme could be 
further streamlined by adding checks for when single sub
jects encounter difficulties during optimization and model 
fitting to flag users.

Discussion

Despite the myriad advantages of modeling dynamic proc
esses in continuous-time, the application of these complex 
models is still critically underutilized (Ryan & Hamaker, 
2022). Furthermore, tools for addressing within-sample het
erogeneity in the continuous-time framework are still few in 
number (Hunter, 2014, 2024; Liu et al., 2021). The current 
work contributes multiple innovations to the literature. First 
and foremost, a novel extension of the GIMME algorithm 
for the continuous-time framework. This extension allows 
researchers to effectively model dynamic processes in the 
continuous-time framework and draw upon many of its 
strengths such as the identification of optimal time-scales 
via transformation of the continuous-time drift matrix 

among others (e.g., Hecht et al., 2019; Hecht & Zitzmann, 
2021a). Additionally, ct-gimme allows users to identify 
common, sample-level dynamics while drawing upon sam
ple-level information to delineate signal from noise. 
Furthermore, the GIMME framework differs from other 
popular frameworks such as multilevel modeling in that 
group-level structures do not constrain individuals to a par
ticular final model structure. This is due to the two-stage 
estimation which identifies a common, group-level structure 
followed by individual model fitting (see Gates & Molenaar, 
2012, for more information regarding GIMME). Second, the 
development of ct-gimme contributes a user-friendly 
means for empirical researchers to explore continuous-time 
modeling. While many complexities belie continuous-time 
modeling, this serves as one–of many other–first step 
towards disseminating these complex models.

Our results indicated that ct-gimme performed well 
when compared to benchmark measures. Specifically, N ¼ 1 
or person-specific model fitting and group-level modeling. 
Both comparisons represent two extreme ends of how 
researchers may view dynamic processes unfolding as either 
entirely idiosyncratic or uniform across all individuals. 
Across our simulation studies, we found that ct-gimme 
reliably performed better than the N ¼ 1 procedures due to 
its ability to draw information across the sample to identify 
key, group-level dynamics. These paths would then further 
strengthen ct-gimme’s ability to identify person-specific 
dynamics later on. This ability to leverage sample-level 
information for person-specific parameter recovery allowed 
ct-gimme to compensate for relatively short person- 
specific time-series. These results are contingent on the 
degree of homogeneity within a given sample and prior 
research has provided guidelines on these relations in con
tinuous-time modeling when balancing temporal sampling, 
T and participants N (see, Hecht & Zitzmann, 2021b). 
Likewise, ct-gimme tended to outperform the group-level 
procedure in the presence of individual differences in 
dynamic structures by identifying common group features 
but enabling person-specific expression via the two-stage 
approach.

Our illustration highlighted the steps researchers may 
take when implementing ct-gimme as well as the benefits 
and pitfalls of modeling in continuous-time. As noted, the 
illustration failed to recover sound models for a large num
ber of participants due to myriad convergence issues relating 
to shifts in dynamics, boundary limits that–when freed– 
exploded, and difficulty in determining whether measure
ment error or process noise variances should be freed in 
lieu of the other. On individual probing, these decisions 
were ultimately person-specific with some participant’s 
converging when some process noises were fixed with 
measurement error variances were freed and vice versa. The 
ct-gimme approach attempts to automate many of 
the decisions to construct continuous-time models from the 
ground up; however, many decisions are still–ultimately–left 
to the user. That being said, the ct-gimme approach of 
iteratively adding a single parameter tended to yield fewer 
convergence issues when compared to fitting person-specific 
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continuous-time models with all dynamic parameters freed 
for estimation.

Limitations

Several limitations exist within the context of the current 
work. First, the OU models used in our simulations are not 
entirely reflective of typical continuous-time dynamic mod
els. The relatively clean nature of our OU models was 
designed to give a clear idea on how manipulations of spe
cific parameters and factors could result in changes to the 
results. As a result–however–the models themselves are 
somewhat artificial. Future research could benefit from a 
more extensive simulation study that begins from a model 
derived from empirical results. Likewise, the estimation of 
ct-gimme imposes a diagonal process noise covariance 
structure which may not be practical for real-world continu
ous-time processes which can exhibit notable covariances in 
their parameterization (e.g., Oravecz & Tuerlinckx, 2011). 
ct-gimme could–in theory–be extended to search the pro
cess noise covariances in addition to the dynamics matrices 
when undergoing model construction; however, more exten
sive testing would be required. Extending upon this further, 
due to the unique flexibility presented by OpenMx, almost 
all model parameters could be tested via the modification 
indices. This could include building the measurement model 
in addition to the dynamic model in a purely data-driven 
fashion. This would allow for specification of multi-indica
tor dynamic factor models with latent variables. Our simula
tions also assumed that no means were present in the data 
of either our simulation or empirical illustration (due to 
centering). As a result, we exclude a vital component of psy
chological processes relating to trends. Past work has illus
trated how neglecting trend-level information may bias 
dynamic parameters but can also be explicitly accounted for 
in continuous-time models (Lohmann et al., 2022, 2024). 
These developments highlight the importance of explicitly 
modeling trend-level information and serves as an avenue 
for future development for ct-gimme.

Our comparison models (i.e., N ¼ 1 and Group-level 
models) represented two extreme ends of the “idio-thetic” 
spectrum of models available to researchers. While continu
ous-time models certainly lag behind discrete-time methods, 
our comparisons were not exhaustive by any means. Future 
research should compare the performance of ct-gimme 
against approaches which assume continuous- rather than 
discrete differences between participants in a sample such as 
the multilevel or hierarchical frameworks. These assume a 
common fixed structure about all model parameters with 
differences between participants being associated with per
son-specific variation about those fixed estimates. These dif
ferences between ct-gimme and multilevel models would 
further elucidate long-standing considerations on whether 
groups differ by continuous or discrete differences in 
dynamic structures (Hunter, 2024).

The empirical illustration highlighted some flaws in ct- 
gimme. Notably, the specification of initial conditions and 
starting values can significantly impact the resulting models 

and whether or not they converge. Entire dissertations could 
be written on the specification of initial conditions and 
starting values. The avenue we took was to fit a group-level 
model and use the resulting parameter estimates for the 
process noise and measurement error variances as starting 
values for ct-gimme. However, it could be the case that 
process noises and/or measurement error variances are per
son-specific and thus the starting values we used may have 
been inappropriate for many in the sample if heterogeneity 
were present as was the case in our application. Due to the 
relatively short time-series relative to the number of esti
mated parameters, we were not able to free up both the pro
cess noise variances and the measurement error variances 
for estimation during the fitting of ct-gimme. More inves
tigation needs to be done regarding these issues to better 
understand the limitations of ct-gimme in relation to data 
quality, sample size, and network size. Likewise, some par
ticipants exhibited clearly non-stationary dynamics (e.g., 
Participant 5; Figure 7).

Regime-switching methods have already been extended 
into the continuous-time framework and have been applied 
readily to various contexts (Chow et al., 2018) and software 
packages (Ou et al., 2019). ct-gimme could be extended to 
account for non-stationarity in dynamics within or between 
individuals. One such approach could be to segment or sub
group individuals through time and seeing whether individ
uals coalesce with themselves at other time periods via 
subgrouping methods in a manner similar to how subgroups 
are derived for heterogeneous time-series of multiple sub
jects (e.g., Gates et al., 2017; Park et al., 2020) or by inclu
sion of time-varying parameters (e.g., Chen et al., 2018; 
Chow et al., 2011; Fisher et al., 2022). In the former 
approach, a rolling window could be applied to individual 
time-series and test whether individuals get “clustered” with 
themselves based on their dynamics. In such cases, individu
als would roughly exhibit similar dynamic patterns. In the 
latter case, the non-stationarity could be explicitly integrated 
into the modeling framework by accounting for how 
dynamic parameters change over time. Notably, recent work 
has demonstrated how time-varying continuous-time models 
may be implemented (Hecht et al., 2024). Moreover, the 
current application of ct-gimme investigated scenarios 
where samples are comprised of a single common dynamic 
structure with individual differences in dynamics. 
Alternatively, samples could be comprised of multiple con
stituent subgroups of individuals who each share more in 
common with a select group of others than they do with 
other members of the overall sample. The GIMME-frame
work has already been extended to this subgrouping case 
(e.g., S-GIMME; Gates et al., 2017) but it–as well as other 
subgrouping methods–are solely developed in the discrete- 
time framework (e.g., Gates et al., 2017; Park et al., 2024). 
Future work should extend ct-gimme to include sub
grouping routines to further parse out within-sample het
erogeneity in dynamic structures. Further, experiments 
could address how well subgroups derived in the discrete- 
time framework align with those derived from the 
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continuous-time framework and whether subgroup solutions 
are dependent on Dt:

Despite these limitations, ct-gimme exhibits promising 
performance in relation to alternative methods for fitting 
continuous-time models (e.g., group-level and person- 
specific approaches) and tends to outperform its discrete- 
time form in select scenarios. Further, by extending the 
GIMME framework to the continuous-time framework, 
researchers may draw upon the many benefits of modeling 
in continuous-time whilst also benefiting from the strength 
of the GIMME approach. Theoretically, the GIMME frame
work is attractive as it implies a common, group-level struc
ture without imposing any real-valued constraint on those 
parameters. In contrast to other popular approaches that 
“pull” participants towards a specific value, individuals in 
the GIMME framework may share common structural paths 
with entirely opposite signs (i.e., X ! Y ¼ þ for one par
ticipant vs X ! Y ¼ − for another). This flexibility encour
ages theoretical conceptualizations on the relevance of 
variables in addition to their magnitude and polarity.
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