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ABSTRACT 
Mediation analysis is widely used to examine whether a third variable mediates the relationship 
between two variables. Latent mediation analysis extends this framework to latent variables measured 
through observable indicators, combining measurement models and mediation paths. Accurate infer
ence in latent mediation analysis depends on two critical assumptions: the correct specification of the 
measurement model and the absence of unmeasured confounders. However, these assumptions are 
often violated in practice. This study estimates latent mediation models within a Bayesian framework 
and investigates how specification errors and prior choices affect parameter estimates through a sys
tematic simulation study. Specifically, we examine four typical specification errors: (1) misspecified 
(e.g., ignore cross-loading) measurement model for the mediator, (2) no measurement (e.g., using total 
score) models for the mediator, (3) no measurement models for confounders, and (4) ignoring con
founders. We also evaluate the influence of prior specifications (diffuse vs. weakly informative) on 
Bayesian inference. The simulation results show that model misspecifications significantly affect the 
accuracy of mediation effect estimates. Standardized total scores for mediators and confounders 
attenuate mediation effects, bias parameter estimates, and produce inaccurate credible intervals. 
Ignoring confounders results in biased estimates, mainly when the confounding effects are medium- 
or large-sized. Adopting accurate weakly informative priors improves parameter recovery, coverage 
rates, and the ability to detect the true mediation effect compared to diffuse priors.
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1. Introduction

Mediation analysis is a widely used tool for examining the 
causal mechanisms that link an independent variable to a 
dependent variable (Baron & Kenny, 1986; Hayes, 2009). 
Applications are spread across various fields, including epi
demiology, psychology, sociology, and related disciplines 
(e.g., Fritz & MacKinnon, 2007; Liu et al., 2021). The pri
mary objective of the mediation analysis is to determine 
whether the relationship between two variables X and Y is 
explained (or mediated), either wholly or partially, by a 
third variable (MacKinnon, 2012; Richiardi et al., 2013). For 
example, the relationship between maternal education and 
children’s reading achievement is mediated by the home 
enrichment (Zadeh et al., 2010). In simple mediation ana
lysis, where the variables are directly observed, regression- 
based methods are typically employed to investigate the 
relationships between the mediator, the independent vari
able, and the dependent variable.

Latent mediation analysis provides a robust framework for 
examining causal mechanisms among latent variables (Finch 
et al., 1997; Mio�cevi�c et al., 2021). This approach is particu
larly beneficial in fields like psychology and the broader social 
sciences, where many important constructs, such as 

personality, intelligence, satisfaction, or stress, are not directly 
observable. Instead, these constructs are measured through 
various observable indicators, such as survey items or test 
scores (Anderson & Rubin, 1956; Cattell, 1952). 
Understanding the relationships among these constructs is of 
primary interest to researchers in these disciplines. Through 
latent mediation analysis, researchers can uncover the under
lying mechanisms and causal pathways that drive observed 
behaviors and outcomes (Cai et al., 2023).

A latent mediation model has two fundamental compo
nents: the measurement and structural models (Finch et al., 
1997). The measurement model defines the relationships 
between latent variables and their observed indicators, 
which is crucial to account for measurement error and to 
ensure that the constructs are accurately represented 
(Mulaik, 2009). This part of the model helps clarify how 
well the observed indicators reflect the underlying latent 
constructs. The structural model then builds on this founda
tion by capturing the direct and indirect effects among the 
latent variables. This aspect of the model allows researchers 
to untangle complex causal pathways, providing a detailed 
understanding of how latent variables influence each other 
(Derkach et al., 2019). By mapping out these pathways, the 
structural model enables researchers to gain deeper insight 
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into the underlying mechanisms that drive observed rela
tionships, revealing how different latent constructs interact 
to produce specific outcomes.

The Bayesian approach provides a flexible framework for 
the parameter estimation and evaluation in mediation ana
lysis (Liu et al., 2021; Wang & Preacher, 2015; Yuan & 
MacKinnon, 2009). Since Yuan and MacKinnon (2009) 
introduced the Bayesian framework to mediation analysis, 
various methodological advancements have been made 
within this perspective. Enders et al. (2013) evaluated the 
performance of Bayesian estimation in handling mediation 
effects when data are missing, demonstrating its robustness 
under such conditions. Liu et al. (2023) proposed a general 
framework for Bayesian hypothesis testing of mediation 
effects using Bayes factors and investigates the potential 
impact of prior odds specifications on Bayesian hypothesis. 
Laghaie and Otter (2023) suggested employing Bayes 
factors as a measure of conditional independence between 
treatment and outcome to strengthen the causal mediation 
inference. Additionally, Daniels et al. (2012) applied a non- 
parametric Bayesian approach to examine causal mediation 
effects, highlighting its potential for modeling complex rela
tionships. Collectively, these studies demonstrate the adapt
ability and effectiveness of the Bayesian framework in 
addressing a range of challenges in mediation analysis.

Bayesian estimation involves specifying prior distribu
tions for model parameters and updating these priors with 
observed data through Bayes’ theorem to obtain posterior 
distributions (Gelman et al., 2014). This incorporation of 
priors can address issues of insufficient information, par
ticularly in scenarios involving complex models or small 
sample sizes, where convergence might otherwise be chal
lenging to achieve (Depaoli et al., 2019; Liu et al., 2022). 
The impact of priors on inferences depends on their accur
acy and informativeness. An accurate prior is centered near 
the true parameter value, whereas an inaccurate prior devi
ates significantly, potentially introducing bias into the pos
terior estimates. Informative priors have a smaller variance, 
reflecting greater certainty about the parameter value, while 
diffuse priors have a larger variance, indicating less certainty 
and providing minimal guidance to the estimation process. 
The accuracy and informativeness of priors may impact the 
validity of inference in latent mediation analysis. For 
instance, Mio�cevi�c et al. (2021) examined how the accuracy 
of priors for structural paths and factor loadings influences 
point and interval estimates of the mediation effect in a sin
gle-mediator latent mediation model without confounders. 
Furthermore, Mio�cevi�c and Golchi (2022) proposed an 
objective procedure for creating informative priors for medi
ation analysis based on historical data, improving precision 
and power to detect mediation effects.

The accurate estimation of indirect or mediation effects 
in Bayesian latent variable mediation analysis relies on the 
satisfaction of several key assumptions. First, there should 
be no unmeasured confounders for the paths between the 
latent independent, mediator, and dependent variables. All 
confounders should be measured and controlled in the ana
lysis. Unmeasured confounders can introduce bias in the 

estimates of path coefficients, distorting the actual mediation 
effect. Second, the measurement model of the latent variable 
should be correctly specified. Misspecification in any part of 
the measurement model can lead to an incorrect under
standing of the latent factors and bias the inference of the 
mediation effect. These assumptions are often violated in 
practice. Unmeasured confounders are common in observa
tional studies, where not all relevant variables can be con
trolled or measured. In addition, many variables are 
measured with error due to various reasons, such as imper
fect instruments and incorrect theoretical structures of the 
measurement model.

The violation of model assumptions has led to investiga
tions into the impact of omitted confounders and measure
ment errors in the mediator, particularly in simple 
mediation analysis. Measurement error arises when the 
mediator is not perfectly reliable. Fritz et al. (2016) investi
gated the impact of the measurement error and omitted 
confounders on mediation effect estimates, showing that 
these factors can lead to overestimation, underestimation, 
or, in some cases, unbiased estimation within the frequentist 
framework. Similarly, Liu and Wang (2021) examined the 
effects of measurement error and omitted confounders on 
statistical inference of mediation effects, proposing a sensi
tivity analysis procedure to mitigate these issues. Lastly, 
Zhang and Wang (2024) argue that when the confounders 
of the mediator M and the dependent variable Y are not 
taken into account in the mediation analysis, their residuals 
become correlated. To address this issue, they propose using 
informative priors with a mean of 0 and a small variance 
(e.g., 0.01) for the correlation parameter between the resid
uals. Taking into account this correlation, the analysis can 
partially mitigate the bias introduced by omitted confound
ers, offering a practical solution when direct measurement 
of confounders is not possible.

Incorporating latent variables into the mediation path 
adds complexity, requiring correct specification of their 
measurement models. Measurement models can be misspe
cified due to incorrect theoretical assumptions, with typical 
errors, including ignoring cross-loadings, and ignoring the 
measurement model by using standardized total scores 
rather than explicitly modeling the measurement structure 
of the latent variable. The standardized total scores are cre
ated by adding the observed indicators and rescaling the 
total score (mean ¼ 0, standard deviation ¼ 1). Ignoring a 
cross-loading is a type of misspecification often arises in 
applied research when theoretical assumptions oversimplify 
the relationships between observed indicators and latent var
iables. The standardized total score condition reflects a com
mon practice in applied research, where composite scores 
are used in place of latent variables due to sample size con
straints, model convergence challenges, or software limita
tions. While latent variable modeling is ideal, composite 
scores introduce measurement error by ignoring indicator 
covariance, potentially distorting mediation estimates (Bauer 
& Curran, 2016; McNeish & Wolf, 2020). Researchers may 
also resort to composite scores when a single-factor model 
does not fit well. Furthermore, most existing literature 
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focuses on the measurement error in the mediator and 
dependent variable. However, few studies have investigated 
measurement errors in confounders, which may also impact 
the inference of the mediation effect.

Despite their critical importance, the impact of model 
assumption violations has not yet been fully explored in 
latent mediation analysis. It remains to be seen how the mis
specification of the measurement model in different parts of 
the mediation model impacts the inference of the mediation 
effects. Comprehensive evaluations of the effects of measure
ment model misspecification and the omission or presence of 
latent confounders on the inference of mediation effects in 
latent mediation analysis are still needed. Moreover, the pres
ence of a confounder, of which the measurement model 
could also be misspecified, further complicates the inference 
of the mediation effect. In the Bayesian context, the accuracy 
and informativeness of priors may interact with model mis
specification, additionally affecting the estimates of mediation 
effects. For example, omitting a confounder in the mediator– 
to–outcome path (gM ! gY ) can inflate the estimated path 
coefficient. If a prior is centered away from the true value, it 
may exacerbate the bias caused by the omission of confound
ers. Conversely, a weakly informative prior with a reasonable 
center can help mitigate some of this bias. This emphasizes 
the importance of careful prior selection, particularly in cases 
where model assumptions may be violated.

To address the current gap in the literature, this study 
conducts a simulation study to systematically assess the 
impact of misspecification in measurement models of latent 
variables and the omission of latent confounders on the 
valid inference of mediation effects within the framework of 
latent mediation analysis. Our unique focus on the measure
ment models of mediators and latent confounders and the 
presence of unmeasured latent confounders will shed new 
light on the accurate inference of the mediation effect. 
Additionally, we will investigate the performance of 
Bayesian estimation methods under various prior specifica
tions to determine how different priors affect parameter 
estimates and overall model performance. The findings of 
the simulation study will provide valuable insights into the 
robustness of latent mediation analysis and offer guidelines 

for improving the accuracy of mediation effect estimation 
using latent variables.

The remainder of this article is organized as follows: 
First, we overview the simple and latent mediation models. 
Next, we delve into Bayesian estimation methods within a 
general framework. We then outline our simulation design 
and describe various types of model misspecification. 
Following this, we present the simulation results. Finally, we 
conclude the study by discussing current developments rele
vant to the application of these models, as well as future 
methodological research directions.

2. Latent Mediation Analysis

This section will begin with a brief overview of simple 
mediation analysis and its extension to latent mediation 
analysis. We will also discuss the model assumptions and 
potential misspecifications in latent mediation analysis.

2.1. Simple Mediation Analysis

We briefly introduce the simple mediation analysis in a lin
ear regression context. For notation, we use the three-vari
able system in which an independent variable X predicts a 
dependent variable Y via regression models (Baron & 
Kenny, 1986), and a mediator M is included; this is demon
strated by the diagrams in Figure 1. The diagram on the top 
panel of Figure 1 portrays the total relation between the 
independent and dependent variables, and the regression 
equation is as follows:

Model 1: Yi ¼ i1 þ cXi þ ei, 1, (1) 

where the coefficient c is the total effect of the independent 
variable X on the dependent variable Y (not considering M), 
i1 is the intercept of the model and ei, 1 is the error term for 
each i. The bottom panel of Figure 1 is a mediation model 
with the variable M as mediator. To study the indirect effect 
of X on Y through a mediator variable M, one needs to 
regress M on X and then Y on both X and M,

Model 2: Mi ¼ i2 þ aXi þ ei, 2 (2) 

Figure 1. Path diagrams for the regression model and the mediation model.
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Model 3: Yi ¼ i3 þ bMi þ c0Xi þ ei, 3, (3) 

where i2 and i3 are the intercepts of the two regression 
models. The parameter a is the coefficient of the relation 
between X and M, b is the coefficient that relates the medi
ator M to Y while controlling X, and c0 is the coefficient 
quantifying the relationship between X and Y while control
ling M. The two terms ei, 2 and ei, 3 are errors associated 
with case i in these two models.

The indirect effect is the estimate of the reduction in the 
predictor effect on the outcome variable when the mediator 
is included in the model, that is, ĉ − ĉ0 given a sample. In 
general, it holds that ĉ − ĉ0 ¼ â � b̂ when the three variables 
are linearly related to each other (MacKinnon et al., 1995). 
The rationale behind this method is that the mediation 
effect depends on the degree to which the predictor changes 
the mediator, represented by the coefficient a, and the 
extent to which the mediator affects the outcome variable, 
represented by the coefficient b.

To fully form the mediation model, the path from X to 
M to Y should be causal. Specifically, there should be no 
unmeasured confounders for the X to Y relationship, the X 
to M relationship, and the M to Y relationship (Imai et al., 
2010; VanderWeele, 2015; VanderWeele & Vansteelandt, 
2009). In addition, if there are confounders for M and Y, 
they should not be affected by the independent variable X.

2.2. Latent Mediation Analysis with Latent Confounders

In the realm of social and psychological sciences, researchers 
often focus on latent traits and their relations. Psychological 
traits are typically assessed using measurement scales, allow
ing the measurement error to be addressed. The mediation 
model is naturally expanded to incorporate latent variables 
in this context. Our illustration of latent mediation models 
is based on the single mediator model with latent variables, 
as introduced by Finch et al. (1997) and Mio�cevi�c et al. 

(2021). The latent mediation model consists of a measure
ment model for the independent variable, the mediator, and 
the outcome variable, along with a structural model for the 
indirect and direct effects among them. In the current study, 
we also consider the presence of potential latent confound
ers for the paths from the independent variables to the 
mediator and from the mediator to the outcome variable, 
respectively.

We present Figure 2 for an example of the latent medi
ation model with three indicators per latent variable.

In this latent mediation model, we have n as the latent 
independent variable, gM as the latent mediator, and gY as 
the latent outcome variable. To ensure generalizability, we 
also consider two latent confounders: fc1 for the path 
between n and gM; and fc2 for the path between gM and gY :

We describe the measurement model for the latent 
independent variable n1, the two latent confounders f1 and 
f2; and the measurement model for the mediator gM

2, and 
the latent dependent variable gY in the following:
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e6

2

6
4

3

7
5

(4) 

The measurement model for the independent variable n 

and the two confounders includes a 9� 3 factor loading 
matrix Kx: The errors di (i ¼ 1, :::, 9) are assumed to follow 
independent normal distributions, denoted as Nð0, r2

di
Þ: For 

mediator gM and dependent variable gY ; each has 3 indica
tors, characterized by a 6� 2 factor loading matrix Ky: The 
corresponding error terms ej (j ¼ 1, :::, 6) are also follow 
independent normal distributions, Nð0, r2

ej
Þ:

Figure 2. Latent mediation model with three indicators per latent variable. The dashed lines indicate either the potential cross-loading or the paths of the poten
tial confounders.

1The independent variable n could be either exogenous or endogenous, 
depending on the presence of a non-zero path from fc1 to n:
2The formulation assumes the absence of cross-loading; however, it can be 
generalized to include cross-loadings.
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The mediation path among the latent variables is repre
sented by the following notation:

n

gM
gY

2

4

3

5 ¼

0 0 0
a 0 0
c0 b 0
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5
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5 fc1
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The independent variable n is linked to the mediator gM 
through a. The symbols b and c’ are the coefficient from the 
mediator gM and the independent variable n to the depend
ent variable gY : The residuals or errors of the paths are 
symbolized as en; eM and eY ; and they follow an independ
ent normal distribution with mean 0 and variance parame
ters r2

n; r2
M; and r2

Y ;
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eM
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2

4
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5 � N3 0,
r2

n 0 0
0 r2

M 0
0 0 r2
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0
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C
A: (6) 

In the latent mediation model, the mediation (or indir
ect) effect is defined as a � b: This indirect effect (i.e., a � b) 
represents the pathway through which the independent vari
able n influences the dependent variable gY via the mediator 
gM: It quantifies how changes in the independent variable 
affect the mediator, which in turn affects the dependent 
variable. The direct effect c0 measures the influence of the 
independent variable on the dependent variable that is not 
mediated by gM: When fitting the latent mediation model to 
an empirical dataset, the goal is to estimate both the indirect 
effect a � b and the direct effect c0; providing insights into 
the underlying mechanisms of the relationship between the 
independent and dependent variables.

2.3. Model Assumptions

Both simple and latent mediation models are essential tools 
for estimating and testing the indirect or mediation effect, 
denoted as âb̂: However, it is crucial to recognize that the 
observed effect may not inherently represent the true medi
ation effect. As discussed by VanderWeele and Vansteelandt 
(2009) and VanderWeele (2015), several vital assumptions 
must be satisfied to ensure valid inference.

First, it is essential that there must be no unmeasured 
confounders affecting the relationships between the inde
pendent variable (X) and the mediator (M), the mediator 
(M) and the outcome variable (Y), and the independent 
variable (X) and the outcome variable (Y). These assump
tions are critical because the presence of unmeasured con
founders can introduce bias, making the accurate estimation 
of the mediation effect difficult.

In addition, the latent mediation model introduces add
itional complexity due to the incorporation of latent varia
bles. For the latent mediation model, it is crucial to ensure 
the measurement models are correctly specified. Any mis
specification in the measurement models can lead to a 
biased understanding of the latent variables, which in turn 
can bias the estimates of the mediation effect.

Meeting these assumptions can be challenging in practice. 
Identifying and controlling for unmeasured confounders is 

often difficult, and accurately specifying the measurement 
model requires careful consideration and validation. Despite 
these challenges, it is important to adhere to these assump
tions to obtain valid and reliable estimates of mediation 
effects in both simple and latent mediation models. When 
these model assumptions are violated, the model becomes 
misspecified, resulting in a poor fit to the empirical data. 
Thus, violations of model assumptions fundamentally reflect 
issues of model specification.

3. Bayesian Estimation

The Bayesian estimation framework provides enhanced 
flexibility for estimating SEM models, as shown by Muth�en 
and Asparouhov (2012). It is particularly advantageous for 
complex models, where traditional estimation methods may 
face challenges, such as convergence issues or limited sam
ple sizes (Depaoli, 2013). These benefits have positioned 
Bayesian estimation as a valuable and increasingly utilized 
approach within SEM.

Latent mediation models include both measurement 
models and the structural model describing the relationship 
among latent variables. Thus, they can be fitted as Bayesian 
SEM models. Mio�cevi�c et al. (2021) evaluated the perform
ance of Bayesian inference for latent mediation models 
under correct model specifications.

Bayesian estimation incorporates prior beliefs for each 
parameter and updates the “belief” with the collected data 
through the Bayesian theorem:

PðhjdataÞ / PðdatajhÞPðhÞ (7) 

where h is the collection of all model parameters to be esti
mated, PðhjdataÞ is the posterior distribution, PðdatajhÞ is 
the likelihood, and PðhÞ is the prior of the model 
parameters.

3.1. Prior Specification

In a latent mediation model, model parameters include: the 
factor loadings kx’s and ky’s, path coefficient among latent 
factors a, b, c0, b1, b2, b3 and b4; residual variances of latent 
factors r2

n=gM=gY
; and residual variances of the indica

tors r2
ej

’s.
In Bayesian estimation, the choice of priors plays a cru

cial role in guiding parameter estimation and ensuring sta
ble model performance, particularly in complex models like 
latent mediation analysis. In our study, we selected normal 
priors for the factor loadings and path coefficients as com
monly used in both SEM and mediation analysis (e.g., 
Depaoli, 2013; Yuan & MacKinnon, 2009),

kx=y � N lkx=y
, r2

kx=y

h i
, (8) 

a, b, c0, bk � N lka=b=c0=bk
, r2

a=b=c0=bj

h i
(9) 

The normal distribution, being symmetric, is well-suited 
for representing prior knowledge or uncertainty about con
tinuous parameters. The accuracy of a normal prior is deter
mined by the mean hyperparameter (l), which, when set to 
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the true parameter value, results in an accurate prior. 
Conversely, an inaccurate prior arises when l deviates from 
the true value, with the degree of inaccuracy increasing as 
the deviation grows. It is worth noting that in practice, 
researchers do not know the true parameter value, so speci
fying an “accurate” prior requires setting l based on plaus
ible parameter values informed by prior knowledge, theory, 
or previous studies. In addition, the variance hyperpara
meter (r2) controls the informativeness of the prior by 
determining its spread. A larger variance (e.g., r2 ¼ 104) 
represents a diffuse prior, which provides minimal guidance 
and allows the data to primarily influence the estimation 
process. In contrast, a smaller variance (e.g., r2 ¼ 0:01) 
results in a weakly informative prior that incorporates mod
erate prior certainty without being overly restrictive, thereby 
balancing prior knowledge and data-driven inference.

For the residual variance parameters (r2
n=gM=gY=ej

), we spe
cify the inverse gamma (IG) prior,

r2
n=gM=gY=ej

� IGða, bÞ, (10) 

The inverse gamma distribution is defined over positive 
values, making it suitable for variance parameters, which 
must always be non-negative. The shape (a) and scale (b) 
hyper-parameters control the informativeness of the IG
prior. Small values of a and b (e.g., a ¼ b ¼ 0:01) produce 
weakly informative priors, ensuring minimal prior influence 
when little is known about the variances. Larger values, 
however, reflect greater certainty about the plausible range 
of variance estimates. This flexibility allows the IG prior to 
accommodate varying levels of prior knowledge while ensur
ing computational stability (e.g., Depaoli et al., 2024; Liu 
et al., 2016).

3.2. Posterior Inference

For SEM models, the posterior distribution often lacks a 
closed-form solution due to the complexity of the model 
structure and parameter dependencies. Therefore, Markov 
Chain Monte Carlo (MCMC) methods are frequently 
employed to approximate the posterior distribution by gen
erating samples from it. MCMC techniques, such as Gibbs 
sampling and the Metropolis-Hastings algorithm, iteratively 
draw samples that converge to the target posterior distribu
tion (Casella & George, 1992; Hastings, 1970). These poster
ior samples are then used to estimate parameter values, 
credible intervals, and other relevant quantities of interest.

In the simulation study, we will evaluate the robustness 
of parameter recovery by examining the effects of different 
hyperparameter settings for the normal priors. Specifically, 
we will vary the priors’ accuracy (centered near or far from 
the true value) and informativeness (tight versus diffuse 
spread) to assess their influence on posterior estimates. This 
allows us to systematically investigate the sensitivity of 
Bayesian SEM estimation to prior specifications.

4. Simulation Design

In this section, we will describe the simulation study, which 
was used to assess the impact of model assumption viola
tions on parameter estimates within the context of Bayesian 
latent mediation analysis. Specifically, we will investigate the 
effects of measurement model misspecification in the medi
ator or the confounder, the omission of confounders, and 
how these interact with the accuracy and informativeness of 
prior distributions. In the following sections, we describe 
the population model used for data generation, the param
eter levels considered, the sample sizes, the manipulation of 
model misspecifications, and the priors employed in the 
simulation study. A summary of all simulation conditions is 
provided in Table 1.

4.1. Population Model

We specified a single population model with confounders, 
described in Figure 2. The model includes a latent inde
pendent variable (n), a dependent variable (gY ), and a latent 
mediator (gM). Each latent variable is measured by three 
primary continuous items: n defined by Items X1 to X3; gM 
by Items Y1 to Y3; and gY by Items Y4 to Y6: Paths are 
defined from n to gM and gM to gY with respective coeffi
cients a and b respectively, and a direct path from n to gY 
with coefficient c0:

To examine the impact of confounder omission, we 
include two confounders, fc1 and fc2; each with three pri
mary indicators: fc1 loads on Items X4 to X6; and fc2 on 
Items X7 to X9: fc1 confounds the paths from n to gM with 
coefficients b1 and b2; and fc2 confounds the paths from gM 
to gY with coefficients b3 and b4:

The primary factor loadings of all items are set as 0.7. 
We also included a non-zero cross-loading from Item X7 to 
gM with a value of 0.5. The factor variance for fc1 and fc2 is 
set at 1. The variance or residual variance of n is set at 1 − 
b2

1; resulting in values of 1, 0.9804, or 0.8479 depending on 

Table 1. Summary of simulation factors and prior specifications.

Simulation Factor Levels/Specifications

Mediation Effect a ¼ b ¼ 0:14 (small)
a ¼ b ¼ 0:39 (medium)
a ¼ b ¼ 0:59 (large)

Confounding Effect b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0 (none)
b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0:14 (small)
b1 ¼ b2 ¼ b3 ¼ b4 ¼ 0:39 (medium)

Sample Size n ¼ 100, 200, 400
Model Specification True Model

Misspecified Models:
- Wrong measurement model for mediator factor
- No measurement model for mediator factor
- No measurement model for one confounder
- No measurement model for two confounders
- One ignored confounder factor
- Two ignored confounder factors

Prior Specification Diffuse Prior:
- IGð−1, 0Þ for residual variances

Weakly Informative Priors:
- Accurate: Nðtrue, 0:5trueÞ

- Inaccurate-1SD: N trueþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �

- Inaccurate-2SD: N trueþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �
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the value of b1; to ensure that the variance of n is equal 
to 1.

The variances of gM and gY account for both the vari
ance explained by their predictor factors and residual vari
ance. For gM; the residual variance is calculated as 
1 − a2 − b2

2 − b2
3; while for gY ; it is 1 − b2 − c02 − b2

4: These 
calculations make sure that the total variances for gM and 
gY are equal to 1. The residual variance of each indicator is 
set to 0.51, resulting in a unit variance for every indicator.

In this setup, the population parameters were specified in 
a standardized manner, ensuring that the total variance of 
each indicator and latent factor equals 1. As a result, the 
estimated mediation effect represents a standardized effect, 
facilitating meaningful interpretation and comparison across 
different conditions.

4.2. Design Factors and Prior

The simulation design factors we consider involve manipu
lating the mediation effect, confounding effect, sample size, 
types of misspecification, and prior specifications.

4.2.1. Mediation Effect
In the population model, the coefficient c0 is fixed at 0.14. 
The coefficients a and b are assigned values of 0.14, 0.39, 
and 0.59. These values correspond to mediation effects a � b 
of 0.01496, 0.1521, and 0.3481, representing small, medium, 
and large effects, respectively (Liu et al., 2021).

4.2.2. Confounding Effect
We denote the path coefficients from the confounders fc1 
and fc2 to n and gM; as well as gM and gY as b1; b2; b3;

and b4: These coefficients take values of 0, 0.14, and 0.39, 
which represent no confounding effect, a minor confound
ing effect, and a medium confounding effect, respectively. 
For simplicity, we set b1 ¼ b2 ¼ b3 ¼ b4:

4.2.3. Sample Size
Three sample sizes (n ¼ 100; 200, and 400) are considered 
to reflect the range typically found in both methodological 
and applied research (e.g., Mio�cevi�c et al., 2021).

4.2.4. Model Specification
The path diagram of the population model is provided in 
Figure 2. Each set of parameter values represents a “true 
model” for the respective simulation conditions.

In our simulation design, we examine six misspecified 
models to cover different scenarios of model misspecifica
tions across measurement and structural models. Firstly, we 
consider two types of measurement model misspecifications 
for the mediator factor gM: one that omits the cross-loading 
from gM to Item X7 (referred to as the “wrong measurement 
model for mediator factor”) and another that uses the 
standardized total score of the indicators for gM (referred to 
as the “no measurement model for mediator factor”). 
Omitting the cross-loading from gM to Item X7 enables us 

to evaluate the impact of disregarding the shared variance 
between a confounder and the mediator on parameter 
estimates.

Ignoring cross-loadings is a common form of model mis
specification in structural equation modeling and has been 
extensively examined in prior research as a prevalent issue 
that can lead to biased parameter estimates and misinter
pretation of latent constructs (e.g., Cain & Zhang, 2019; 
Depaoli et al., 2024; Winter & Depaoli, 2022). This type of 
misspecification often arises in applied research when theor
etical assumptions oversimplify the relationships between 
observed indicators and latent variables, potentially leading 
to inaccurate conclusions. Similarly, the practice of using 
standardized total scores as proxies for latent variables is 
frequently observed in empirical studies due to its simplicity 
and ease of implementation, despite its tendency to overlook 
measurement error and the true underlying structure of the 
construct (Bauer & Curran, 2016; McNeish & Wolf, 2020).

In addition to the misspecification of the mediator factor, 
we consider the misspecification of the measurement models 
of the confounder factors: models that ignore the measure
ment structure of either fc1 (referred to as “no measurement 
model for one confounder”) or both fc1 and fc2 (referred to 
as “no measurement model for two confounders”). In these 
“no measurement model” conditions for the confounders, 
standardized total scores are used as proxies for the latent 
confounders.

For structural model misspecifications, we consider mod
els that ignore the presence of a confounder for the path 
from n to gM (referred to as “one ignored confounder 
factor”) and models that omit both confounders fc1 and fc2 
(referred to as “two ignored confounder factors”). In prac
tical applications, measuring all relevant confounders is 
almost impossible. Hence, it is necessary to manipulate it in 
the simulation.

4.2.5. Prior Specification
For the variance parameter, the inverse gamma (IG) prior is 
a widely used choice in Bayesian structural equation model
ing. As demonstrated by Asparouhov and Muth�en (2010), 
the priors IGð−1, 0Þ; IGð0, 0Þ; and IGð1, 2Þ have minimal 
influence on parameter estimates, especially when the model 
includes a reasonable number of indicators (e.g., five indica
tors per factor). Notably, the IGð−1, 0Þ prior is equivalent 
to a uniform prior on variance parameters, rendering it 
non-informative. This makes it the default choice in Mplus, 
as it allows the data to primarily inform the parameter esti
mates without imposing strong prior assumptions. Given 
these considerations, we adopted the IGð−1, 0Þ prior in our 
simulation study to align with established best practices and 
to reduce the potential for prior-induced biases.

For factor loadings and path coefficients, we selected nor
mal priors based on previous studies such as Asparouhov 
and Muth�en (2010) and Depaoli (2013), which demon
strated that both the accuracy and informativeness of nor
mal priors can influence estimation outcomes. When 
normal priors are highly diffuse, such as Nð0,1Þ (the 
default prior in Mplus), they exert minimal influence on 
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point estimates, even when their center deviates from the 
true value. However, a certain level of informativeness is 
necessary to provide meaningful guidance in estimation, 
particularly in small-sample or complex models.

Following the framework proposed by Depaoli (2013), we 
consider three weakly informative priors,

Weakly informative-accurate : kx=y, b, a, b, c0 � N ðtrue, 0:5trueÞ

(11) 
Weakly informative-inaccurate-1SD : kx=y, b, a, b, c0

� N trueþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �

(12) 
Weakly informative-inaccurate-2SD : kx=y, b, a, b, c0

� N trueþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1true
p

, 0:5true
� �

(13) 

These three weakly informative priors share the same level 
of informativeness, with the prior variance set at 50% of the 
true parameter value. The priors differ in terms of accuracy, 
with their centers positioned at the true value (accurate), ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1� true
p

(mildly inaccurate), and 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1� true
p

(more 
inaccurate). This design allows us to systematically assess 
how varying degrees of prior accuracy influence parameter 
recovery, coverage rates, and model performance, offering 
practical insights into the trade-offs between prior inform
ativeness and bias in Bayesian latent mediation analysis.

4.3. Summary

Table 1 summarizes all the simulation factors and prior spec
ifications. We consider three levels for mediation paths, three 
levels for confounding effects, three sample sizes, seven model 
specifications, and four prior specifications, resulting in 3�
3� 3� 7� 4 ¼ 756 simulation cells. For each cell, 500 data
sets were generated, and true and misspecified models were 
fitted to all replicated datasets. The simulation was conducted 
in Mplus (Muth�en & Muth�en, 1998–2017). The percentage of 
converged replications was around 99.67%, with a median of 
100% based on the Gelman-Rubin (R̂) convergence statistic. 
The simulation results will be calculated based on the con
verged replications.

In the following section, we will assess the accuracy of 
parameter estimates, the 95% credible interval coverage 
rates, the proportion of replications where the credible 
interval excludes zero, and variations in the root mean 
square error (RMSE).

5. Simulation Results

In this section, we will report on how model misspecifica
tions in different parts of the model and the omission of 
latent confounders impact the Bayesian inference of the 
mediation effect. We will provide detailed information on 
the accuracy of point estimates, a summary of the credible 
intervals, and the power of Bayesian methods to detect the 
mediation effect. Additionally, we will evaluate how the per
formance of the Bayesian estimation method varies under 
different prior specifications.

5.1. Evaluation Criteria

Posterior inference is based on samples drawn from the pos
terior distribution. Two Markov chains are generated for 
each parameter. After the burn-in phase of 10,000 iterations, 
each chain consisted of 10,000 iterations for the estimated 
posterior. The summary statistics are computed based on a 
total of 20,000 iterations (10,000 from each chain).

The posterior mean based on the samples is computed as

ĥ ¼
1

20000

X20000

i¼1
hðiÞ: (14) 

Given a significance level a; a posterior credible interval 
of rth replication is defined as interval ½Lr, Rr� such that 

#fhðiÞ : hðiÞ < Lrg

20000
¼

#fhðiÞ : hðiÞ > Rrg

10000
¼ a=2: (15) 

5.1.1. Relative Bias
Let h be an arbitrary parameter in the model to be esti
mated and also its population value. Let ĥr and ½Lr, Rr� be 
the posterior mean and 95% credible interval from the rth 
replication. Let R be the number of replications that con
verged3, then

�h ¼
1
R

XR

r¼1
ĥr, (16) 

which is the average of parameter estimates across R con
verged replications.

The accuracy of parameter estimates is evaluated using 
“relative bias,” which is a ratio of bias (difference between a 
point estimate and the true value of a parameter) to the 
absolute true value,

relative biash ¼

�h − h

jhj
if h 6¼ 0

ð�h − hÞ otherwise:

8
><

>:
(17) 

5.1.2. Coverage Rates of Bayesian Credible Interval
Coverage rates refer to the proportion of times that the true 
parameter value is captured within the estimated credible 
interval in repeated sampling or replications. It is a crucial 
metric in Bayesian analysis for assessing the reliability and 
validity of interval estimates. In the current study, we will 
report the coverage rate of the 95% credible interval.

Let h be a parameter and its true value. The coverage 
rate (CR) for h is defined as:

CRh ¼
1
R

XR

r¼1
Iðh 2 Lr, Rr½ �Þ (18) 

where ½Lr, Rr� is the 95% Bayesian credible interval, R is the 
number of converged replications, and Ið�Þ is an indicator 
function that takes a value of 1 if the checking condition is 

3The convergence is assessed based on the Proportional Scale Reduction (PSR) 
factor less than 1.1 for all parameters in the model.
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true. The coverage rate is often used to assess the validity of 
the Bayesian credible intervals. A coverage rate close to the 
nominal one (i.e., 0.95) indicates that the statistical inference 
based on credible intervals is trustworthy.

5.1.3. Bayesian “Power” for Detecting Mediation Effect
To evaluate the ability of Bayesian estimation methods to 
detect the mediation effect, we calculated the proportion of 
replications in which the 95% credible interval excludes 
zero. This index quantifies the posterior probability of 
detecting the mediation effect and is comparable to the 
“power” of a study in the frequentist framework. While the 
term “power” is more traditionally associated with the fre
quentist framework, we use it here to facilitate comparisons 
and enhance interpretability for readers familiar with fre
quentist terminology.

power ¼
1
R

XR

r¼1
Ið0 =2 Lr, Rr½ �Þ (19) 

5.1.4. Root Mean Square Error
The RMSE is a metric used to quantify the average differ
ence between estimated values and true values. Let ĥr be the 
posterior mean of parameter h (also its true value is also 
denoted as h) in the r0th replication, then

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R
ðĥr − hÞ

2
r

(20) 

RMSE reflects how well the central tendency (posterior 
mean) of the posterior distribution aligns with the true 
value and the consistency of these estimates across all repli
cations. Lower RMSE values indicate more accurate and 
reliable estimates, whereas higher RMSE values suggest 
greater discrepancies between the estimated and actual 
values.

In the following sections, we present results on the accur
acy of parameter estimates, coverage rates of credible inter
vals, power to detect the mediation effect, RMSE, and prior 
sensitivity analysis. Within each category, we examine 
results for the following conditions: (1) the correctly speci
fied model, (2) models with a misspecified or absent meas
urement model for the mediator, (3) models without a 
measurement model for the confounders, and (4) models 
that omit confounders. Notably, we report results for the 
misspecified measurement model and the no-measurement 
model for the mediator in the same subsection, as both con
ditions introduce measurement errors in the mediator.

5.2. Accuracy of Parameter Estimates

Figure 3 displays the relative bias in the estimates of the 
mediation/indirect effect with diffuse priors across seven 
models, as outlined in Table 1. The two black horizontal 
lines are at −0.1 and 0.1, representing a 10% bias below and 
above the true value. A relative bias within this range is 
considered acceptable.

The columns of the grid represent different levels of the 
mediation effect (a � b ¼ 0:0196; 0.1521, and 0.3481), corre
sponding to small, medium, and large mediation effects. 
The rows reflect the magnitude of the paths of the con
founders, which range from 0 (no confounding) to 0.14 
(small confounding effect) to 0.39 (medium confounding 
effect).

5.2.1. True Model
In most cases, the relative bias is acceptable for the true 
model, except when the mediation effect is small, but the 
confounding effect is medium. When the mediation effect is 
small (a ¼ b ¼ 0:14; a � b ¼ 0:0196) and the confounding 
effect is medium (0.39), the relative bias of the mediation 
effect is close to 1. Under these extreme conditions, the con
founder plays a dominating role in predicting the dependent 
variable gY compared to the mediator. When the true model 
is fit to the data, the relative bias in the estimates of the 
mediation effect is acceptable.

5.2.2. Misspecified Measurement Model and No 
Measurement Model for Mediator
In this subsection, we examine the impact of two types of 
measurement model misspecifications on mediation effect 
estimates: (1) a misspecified measurement model and (2) an 
ignored measurement model using a standardized total 
score. These two conditions are grouped together because 
they both involve errors in the measurement model, though 
they differ in severity. Structuring them within the same 
subsection allows for clearer interpretation and direct com
parison of their effects on parameter estimates.

For both types of errors in the measurement model of 
the latent mediator, the relative bias increases notably, par
ticularly when no confounders (b ¼ 0) are present or the 
confounding effect is small (b ¼ 0:14). The relative bias 
ranges approximately from −0.25 to −0.75.

Using a standardized total score as the “mediator” to esti
mate the mediation effects further reduces the accuracy of 
the estimates, leading to a severe underestimation of the 
mediation effect, with the relative bias exceeding −0.50. 
This bias is more severe than that caused by ignoring the 
cross-loading of the mediator factor.

5.2.3. No Measurement Model for Confounder
Ignoring the measurement model for the n! gM con
founder and using the standardized total score generally 
have minimal impact on the estimates of the mediation 
effect. The relative bias remains acceptable (i.e., between 
−0.1 and 0.1) in most cases, except when a medium con
founding effect is coupled with a small mediation effect. 
However, when the measurement model for the confounder 
on the path gM ! gY is also ignored, the mediation effect is 
significantly underestimated, leading to severe negative rela
tive bias ranging approximately −0.25 to −0.50.
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5.2.4. Ignoring Confounders
Omitting confounders introduces substantial bias, especially 
when the confounding effect is medium-sized. In the current 
design, the path coefficients of the confounders are positive. 
When these confounders are ignored, the mediation effect is 
severely overestimated with a relative bias approaching 1. 
However, when the confounding effect is small (b ¼ 0:14), 
the impact of ignoring the confounder is less severe, resulting 
in a relative bias of approximately 0.1–0.2.

Larger sample sizes reduce relative bias for the true model 
and lightly reduce the bias for the model that uses the stand
ardized total scores for the mediator or the confounder.

5.2.5. Summary
With no misspecification, the Bayesian estimate of the indir
ect effect is accurate, except when the indirect effect is 
small, while the confounding effect is medium.

Misspecifying the mediator’s measurement model signifi
cantly increases bias, particularly when no confounders are 
present or the confounding effect is small. Utilizing a stand
ardized total score for the mediator exacerbates this bias, 
more so than ignoring cross-loadings. Neglecting the meas
urement model for confounders has minimal impact when 
the confounding effect is small; however, medium con
founding coupled with a small mediation effect leads to 

unacceptable bias. Omitting the measurement model for 
confounders on the gM ! gY path results in severe under
estimation of the mediation effect.

Finally, ignoring confounders leads to substantial over
estimation of the mediation effect, especially when the con
founding effect is medium. Larger sample sizes mitigate bias 
across all scenarios, with the greatest benefit observed under 
the correctly specified model.

5.3. Coverage Rates of the Credible Intervals

Figure 4 shows the coverage rate of the 95% credible inter
vals of the mediation effect. The two black horizontal refer
ence lines are at 0.95 and 0.5. A coverage rate of around 
0.95 is preferable. The columns of the grid represent differ
ent levels of the mediation effect (a � b ¼ 0:0196; 0.1521, 
and 0.3481), corresponding to small, medium, and large 
mediation effects, respectively. The rows reflect the magni
tude of the coefficients for the paths of the confounders.

5.3.1. True Model
For the true model, the coverage rates are around 0.95 con
sistently for all conditions. This fact shows that the Bayesian 
estimation with diffuse priors estimates the credible interval 
accurately.

Figure 3. The relative bias of the mediation effect across seven model specifications under diffuse priors for both path coefficients and factor loadings. The col
umns in the grid represent different mediation effects, while the rows indicate the magnitude of the confounding effect. Each panel includes two black horizontal 
lines at 0.1 and −0.1, marking the acceptable range for relative bias.
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5.3.2. Misspecified Measurement Model and No 
Measurement Model for Mediator
Similar to the discussion on parameter estimate accuracy 
above, we examine the coverage rates for models with a 
misspecified measurement model and those without a meas
urement model for the mediator in the same subsection for 
comparison.

When the measurement model of the latent mediator is 
misspecified (i.e., ignoring the cross-loading), the coverage 
rates of the 95% credible interval fall below 0.95. As the 
confounding effect increases, the coverage rates deteriorate 
further.

When the measurement model is ignored, and the stand
ardized total score is used, the coverage rates drop even 
more significantly. They can be as low as 50%.

5.3.3. No Measurement Model for Confounders
When the measurement structure of the confounders is 
ignored, standardized total scores are used instead. When 
only the confounder for the n! gM path ignores the meas
urement model, the coverage rates remain close to 0.95. 
However, when the measurement models for both con
founders are ignored, the coverage rates drop significantly. 
This issue is more severe when there is no true confounding 
effect or when the confounding effect is minor (g ¼ 0:14). 

Interestingly, when the confounding effect is medium-sized 
(b ¼ 0:39), the coverage rates return to around 0.95. This 
pattern highlights the complexity and varying influence of 
confounding effects on coverage rates in latent mediation 
analysis.

5.3.4. Ignoring Confounders
When the path coefficient of the confounders is small 
(b ¼ 0:14), ignoring the confounders has little impact on 
the coverage rates of the mediation effect. However, when 
the coefficient of the confounder is medium-sized 
(b ¼ 0:39), the coverage rates of the mediation effect drop 
severely.

Based on the results shown in Figure 4, we also observe 
that the coverage rates decrease with larger sample sizes. 
This occurs because larger sample sizes result in narrower 
credible intervals, which can lead to lower coverage rates.

5.3.5. Summary
For the true model, coverage rates consistently approximate 
0.95 across all conditions, demonstrating the accuracy of 
Bayesian estimation with diffuse priors.

Misspecifying the mediator’s measurement model, such 
as ignoring cross-loadings, reduces coverage rates, 

Figure 4. The coverage rates of the 95% Bayesian credible intervals of the mediation effect across seven model specifications when the diffuse priors are used. 
The columns in the grid represent different mediation effects, while the rows indicate the magnitude of the confounding effect. Each panel includes two black hori
zontal lines at 0.5 and 0.95. A coverage rate close to 0.95 is acceptable.
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particularly when the confounding effect is medium-sized. 
Using standardized total scores for the mediator leads to 
even more significant declines, with coverage rates dropping 
to as low as 50%.

Ignoring the measurement model for confounders produ
ces mixed results. When only the confounder for the n!
gM path lacks a measurement model, coverage rates remain 
close to 0.95. However, when both confounders use standar
dized scores, coverage rates drop significantly, especially 
with no or minor confounding effects. Medium confounding 
effects (b ¼ 0:39) appear to mitigate this decline. Omitting 
confounders results in severe coverage rate reductions when 
the confounding effect is medium-sized, whereas minor 
effects have little impact.

5.4. Power for Detecting the Mediation Effect

Figure 5 demonstrates the ability of the Bayesian estimation 
method to detect the mediation effect. As in the other plots, 
the columns represent the magnitudes of the mediation 
effect, and the rows correspond to the values of the path 
coefficients for the confounders. The two horizontal lines 
represent a power of 0.90 and 0.50, respectively.

5.4.1. True Model
When fitting the true model, the power to detect the medi
ation effect increases as the mediation effect becomes larger. 
When the true mediation effect is 0.0196, the power can be 
as low as 0.5. For a medium-sized mediation effect of 
0.1521, the power to detect the mediation effect exceeds 
0.90 for sample sizes of 200 and above. With a large medi
ation effect of 0.3481, the power to detect the effect reaches 
0.80, even for sample sizes as small as 100. Overall (and as 
would be expected), the power increases as the sample size 
becomes larger.

Moreover, the magnitude of the confounding effect also 
impacts the power to detect the mediation effect. As the 
path coefficient of the confounder increases from 0 to 0.39, 
the power drops slightly.

5.4.2. Misspecified Measurement Model and No 
Measurement Model for Mediator
For both the misspecified measurement model (i.e., omitting 
a cross-loading) and the no measurement model for the 
mediator (i.e., use the standardized total score), the power 
to detect the mediation effect is lower than in the true 
model. For a small mediation effect, the power remains 

Figure 5. The power to detect the true mediation effect under diffuse priors. The grid’s columns represent different mediation effects, while the rows correspond 
to varying magnitudes of the confounding effect. Each panel includes two black horizontal lines indicating power thresholds of 0.90 and 0.50, respectively.
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below 0.25, even with a large sample size of 400. The power 
to detect a medium-sized mediation effect reaches 0.90 with 
a sample size of 200 and greater, provided there is no true 
confounder (b ¼ 0). The power is even higher for a large 
mediation effect (i.e., 0.3481), indicating that the chance of 
detecting the mediation effect can still be high with medium 
or large mediation effects. As expected, the power increases 
with larger sample sizes and greater true mediation effects 
but drops as the confounding effect becomes more 
substantial.

5.4.3. No Measurement Model for Confounders
The power to detect the mediation effect decreases signifi
cantly when the measurement model of the confounders is 
ignored. This impact is more notable when the mediation 
effect is small or medium. As the confounding effect 
increases, the power decreases further, especially when the 
sample size is small and the confounding effect is large. 
However, a larger sample size can mitigate the effect of 
ignoring confounders and maintain relatively high power to 
detect the mediation effect.

5.4.4. Ignoring Confounders
When the confounding effect is null or small (b ¼ 0:14), 
ignoring confounders has little impact on the power to 
detect the mediation effect. However, when the confounding 
effect is large, ignoring the confounders inflates the power.

To further understand this phenomenon, we refer back 
to the relative bias in Figure 3. When confounders are 
ignored, the covariation due to confounders is misattributed 
to the estimated mediation path, inflating the estimates of 
the mediation effect in proportion to the level of confound
ing effect under consideration.

5.4.5. Summary
Across all misspecified models, the power to detect the 
mediation effect suffers most from the misspecification of 
the measurement model for the latent mediator. The power 
also decreases due to the misspecification of the measure
ment model for the latent confounder. The impact of ignor
ing the latent confounder is mixed and depends on whether 
the mediation effect estimates are overestimated or 
underestimated.

A large sample size consistently promotes the power to 
detect the mediation effect, as well as the sign of the medi
ation effect.

5.5. Root Mean Square Error

Figure 6 demonstrates the RMSE for different model specifi
cations. As in the other plots, the columns are the levels of 
the mediation effect, and the rows are the magnitudes of the 
path coefficient of the confounders. Each of the lines repre
sents a sample size condition.

The RMSEA decreases as the sample size increases and 
the true mediation effect decreases. Additionally, the RMSE 
becomes larger as the confounding effect grows.

Among the seven models, ignoring confounders and 
using standardized total scores for latent mediators results 
in larger RMSEs compared to other models.

5.6. Prior Sensitivity Analysis

In the above analysis, we evaluated the accuracy of point 
estimates, the coverage of the posterior credible interval, 
and the power of each model to detect the mediation effect, 
focusing on diffuse priors. In empirical data analysis, weakly 
informative priors are often adopted to improve conver
gence for complex models while balancing the incorporation 
of prior knowledge with maintaining objectivity in infer
ence. Therefore, we aim to assess how the accuracy and 
level of informativeness of the prior impact the performance 
of Bayesian estimation of the latent mediation model and 
how prior specification interacts with model 
misspecification.

In the current study, we varied the normal priors for the 
path coefficient and the factor loading parameters. We set 
the variance of the normal prior at 0:5� true to mimic the 
weakly informative prior. By adjusting the center of the nor
mal distribution, we manipulated the level of accuracy of 
the priors. We considered three levels of accuracy: with the 
center of the normal prior set at the true value, 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1� true
p

greater than the true value, and 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1� true
p

greater than 
the true value. These three weakly informative priors are 
called Weakly Informative Accurate (WI-Acc), Weakly 
Informative Inaccurate with the center deviated by ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:1� true
p

from the true value (WI-InAcc-1SD), and 
Weakly Informative Inaccurate with the center deviated by 
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1� true
p

from the true value (WI-InAcc-2SD). 
Although these three priors share the same level of preci
sion, their accuracy differs.

Our analyses indicated that the impact of weakly inform
ative priors is not substantial for conditions with sample 
sizes of 200 and 400. However, it significantly influenced 
the results when the sample size was small, such as 100. 
Therefore, we present the results for n ¼ 100 for brevity.

5.6.1. Accuracy of Parameter Estimates
Figure 7 shows the relative bias in the estimates of the 
mediation effect. The rows and columns of the grid repre
sent the magnitude of the mediation effect and the levels of 
the path coefficients of the confounders, respectively. In 
each panel, the horizontal lines at −0.1 and 0.1 indicate the 
acceptable range for relative bias. Each spaghetti plot high
lights a different prior.

5.6.1.1. True Model. For the true model, the three weakly 
informative priors and diffuse priors lead to similarly small 
relative biases when the mediation effect is medium or 
greater. Relative bias varies across priors primarily when the 
mediation effect is as small as 0.0196. Among the four 
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priors, the weakly informative inaccurate prior with the cen
ter 2 SD away from the true value (WI-InAcc-2SD) causes 
severe bias, with a relative bias greater than 0.5.

5.6.1.2. Misspecified Measurement Model and No 
Measurement Model for Mediator. When the measurement 
model for the mediator is misspecified, all four priors 
underestimated the mediation effect with similar relative 
bias with mediation effect medium (0.1521) or large 
(0.3481). The bias was approximately −0.10 with no con
founding effect, −0.25 with small confounding effects, and 
−0.50 with medium-sized confounding effects. When the 
mediation effect is small, its estimates become more sensi
tive to prior specification. Both the diffuse prior and weakly 
accurate prior led to an underestimation of the mediation 
effect. As the prior center shifted to the right, the relative 
bias decreased (i.e., WI-InAcc-1SD), and with a more 
extreme rightward shift (i.e., WI-InAcc-2SD), the estimates 
began to overestimate the mediation effect.

With no measurement model for the mediator, the stand
ardized total score was used, leading to a severe underesti
mation of the mediation effect due to measurement error in 
the total score. The relative bias exceeds −0.50 when using 
the diffuse prior or the weakly informative accurate prior 
(WI-Acc) are used. However, weakly inaccurate priors with 

centers greater than the true value partially mitigate this 
underestimation of the mediation effect caused by the meas
urement error.

5.6.1.3. No Measurement Model for Confounders. When 
the standardized total score is used for the confounder on 
the path n! gM; the relative bias shows a mixed pattern 
depending on the levels of the confounding effect and the 
magnitude of the mediation effect. The distinction among the 
four priors is minimal when the mediation effect is medium 
or large. However, when the mediation effect is small 
(0.0196), there is a noticeable distinction among priors. The 
diffuse prior and the weakly informative accurate prior 
underestimate the mediation effect. In contrast, the two 
weakly informative inaccurate priors (WI-InAcc-1SD and 
WI-InAcc-2SD) overestimate the mediation effect, especially 
when the path coefficient of the confounders is small. When 
both confounders use the standardized total score, the medi
ation effect is underestimated across all priors, particularly 
when the path coefficients of the confounders are small.

5.6.1.4. Ignoring the Confounder. When confounders are 
ignored, the relative bias exceeds acceptable thresholds 
(> 10%), particularly when the confounding effect is 
medium (0.39).

Figure 6. The root mean square error (RMSE) of the mediation (indirect) effect under diffuse priors. The grid’s columns represent varying mediation effects and the 
rows correspond to different magnitudes of the confounding effect. Each spaghetti line in a plot represents the RMSE of a corresponding sample size.
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When the mediation effect is small (0.0196), notable dif
ferences emerge among the four types of priors. With dif
fuse priors or weakly informative accurate priors (WI-Acc), 
the relative bias remains less severe and within an accept
able range (−10% to 10%). However, as the center of the 
weakly informative priors shifts further to the right, medi
ation effects become increasingly overestimated. Specifically, 
under the WI-Acc-1SD prior, the relative bias reaches 
approximately 0.25, and with the WI-InAcc-2SD prior, it 
exceeds 0.50.

In summary, the analysis demonstrates that both prior 
selection and model specification play a critical role in influ
encing relative bias in mediation effect estimates. For the 
true model, all priors yield similar results for medium or 
large mediation effects; however, weakly informative 
inaccurate priors result in severe bias for small effects. 
When the mediator’s measurement model is misspecified, 
measurement error leads to underestimation of the medi
ation effect, though weakly inaccurate priors help mitigate 
this bias. For confounders, the use of standardized total 
scores produces mixed biases based on the mediation and 
confounding effects, with severe underestimation observed 
when both confounders lack adequate measurement models. 
Ignoring confounders causes significant biases, especially 
with diffuse priors, while weakly inaccurate priors partially 

reduce this bias. These findings highlight the necessity of 
precise prior selection and accurate model specification to 
achieve robust and reliable inference in Bayesian mediation 
analysis.

5.6.2. Coverage Rates of Credible Intervals
Figure 8 illustrates the coverage rates of the 95% credible 
interval, representing the proportion of replications in which 
the credible interval covers the true mediation effect. As an 
index of the validity of the credible interval estimates, a 
coverage rate of around 0.95 is desired. In each panel of the 
plots, the top horizontal line in black indicates a coverage 
rate of 0.95.

Based on the results, the priors have little impact on the 
coverage rates, except in scenarios where the total scores are 
used for the latent confounders or the confounders are 
ignored and the path coefficient of the confounders is 
medium (i.e., b ¼ 0:39).

When using the total score for the confounders, using 
the diffuse prior leads to a slightly higher coverage rate.

5.6.3. “Power” for Detecting Mediation Effect
Figure 9 illustrates the power to detect the mediation effect 
across different prior specifications, magnitudes of 

Figure 7. The relative bias of the mediation effect estimates across various prior specifications with a sample size of 100. The grid’s columns represent different 
mediation effects, while the rows correspond to varying magnitudes of the confounding effect. The two black horizontal lines indicate the acceptable range for 
relative bias, set at 0.1 and −0.1. Each spaghetti line represents a specific prior specification.
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mediation effects, and levels of confounding effect when the 
sample size is 100. The columns represent the magnitudes 
of the mediation effect (a � b ¼ 0:0196, 0:1521, 0:3481), while 
the rows indicate the levels of the path coefficients of con
founders (b ¼ 0, 0:14, 0:39). The plots compare the power 
across four different prior specifications: diffuse prior, 
Weakly Informative Accurate (WI-Acc), Weakly Informative 
Inaccurate with 1 SD deviation (WI-InAcc-1SD), and 
Weakly Informative Inaccurate with 2 SD deviation (WI- 
InAcc-2SD),

For the true model, the power to detect the mediation 
effect increases with its magnitude. For small mediation 
effects (0.0196), the power is low across all priors. For 
medium (i.e., 0.1521) mediation effects, the power exceeds 
0.60 for weakly informative priors and reaches 0.90 for the 
larger mediation effect (0.3481) when the sample size is 100.

The diffuse prior leads a lower power than the weakly 
informative priors (WI-Acc, WI-InAcc-1SD, and WI-InAcc- 
2SD), especially for medium and large mediation effects. 
When the mediation effect is large, all models have large 
power to detect it, except when the mediator model is mis
specified and the confounding is large. For small mediation 
effects, the difference in power among priors is less pro
nounced, with all priors performing similarly poorly.

As the confounding effect increases from b ¼ 0 to b ¼

0:39; the power to detect the mediation effect decreases 
slightly across all priors. When the confounding effect is 
small (b ¼ 0:14), the power remains relatively high, but it 
drops noticeably when the confounding effect is 
medium (b ¼ 0:39).

The presence of model misspecifications, such as ignor
ing the cross-loading of the latent mediator or confounders, 
reduces the power across all levels of mediation and con
founding effects.

In sum, the power to detect the mediation effect is influ
enced by its magnitude, the level of the confounding effect, 
and the specification of priors. Although weakly informative 
inaccurate priors (WI-InAcc-1SD and WI-InAcc-2SD) can 
mitigate some biases, they also exhibit higher power in 
detecting mediation effects, particularly for small mediation 
effects.

5.6.4. Root Mean Square Error
The RMSE for conditions with a sample size of 100 is pre
sented in Figure 10.

For all prior conditions, the RMSE increases as the medi
ation effect amplifies and as the path coefficient of the con
founders becomes larger. With the diffuse prior, the RMSE 

Figure 8. The coverage rates of the 95% Bayesian credible intervals with a sample size 100. The grid’s columns represent different mediation effects, while the 
rows correspond to varying magnitudes of the confounding effect. The two black horizontal lines represent the coverage rate 0.50 and 0.95. Each spaghetti line 
represents a specific prior specification.
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is larger than with weakly informative priors, and this dis
tinction becomes more apparent for larger mediation effects 
and confounder path coefficients.

6. Concluding Remarks

As mediation analysis among latent variables continues to 
gain popularity, it is vital to thoroughly understand the per
formance and impact of specification errors. Including the 
measurement model for latent variables aims to enhance the 
accurate understanding of these latent constructs. However, 
incorporating latent variables also increases the complexity 
of a model. Accurate inference of the mediation effect relies 
on two key assumptions: first, there are no unmeasured 
confounders; second, the measurement model is correctly 
specified. Unfortunately, these assumptions are often vio
lated in practice. It is challenging to measure and control all 
relevant confounders, and the measurement model of latent 
variables can be misspecified. Furthermore, confounders 
could be latent variables, and their measurement models 
could be misspecified or omitted.

6.1. Summary of the Findings

In this study, we investigated the performance of the 
Bayesian estimation method in estimating the mediation 

effect, focusing on how this performance varies with viola
tions of the model assumptions. Specifically, we examined 
the impact of incorrect or ignored measurement models for 
the mediator, ignored measurement models for the con
founder, and omission of confounders. Furthermore, we 
assessed how model misspecifications interact with prior 
specifications and impact the performance of Bayesian 
methods in estimating the mediation effect. We considered 
both diffuse priors and weakly informative priors with dif
ferent levels of accuracy to mimic practical implementation.

For the correctly specified (true) model, Bayesian estima
tion can accurately estimate the mediation effect with an 
acceptable relative bias, especially with medium or large 
mediation effect. The coverage rates were consistently 
around 0.95, indicating reliable Bayesian estimation with 
diffuse priors. The power to detect the mediation effect 
increased with larger mediation effects and sample sizes, but 
diffuse priors generally resulted in lower power compared to 
weakly informative priors. RMSE increased with larger 
mediation and confounding effects, but larger sample sizes 
reduced RMSE, improving the accuracy of parameter 
estimates.

With misspecified measurement models for the latent 
mediator, the relative bias increased notably, especially when 
there were no confounders or when the confounding effect 

Figure 9. Power for detecting the mediation effect with a sample size 100. The grid’s columns represent different mediation effects, while the rows correspond to 
varying magnitudes of the confounding effect. The two black horizontal lines represent the power 0.50 and 0.90. Each spaghetti line represents a specific prior 
specification.
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was small. Using standardized total scores further reduced 
accuracy, leading to unacceptable bias. The coverage rates 
dropped significantly, particularly with no or minor con
founders. The power to detect the mediation effect also suf
fered, especially with small mediation effects, although 
larger sample sizes and higher mediation effects improved 
power. RMSE increased with misspecified measurement 
models, especially with larger mediation and confounding 
effects.

Ignoring the measurement model for the n! gM con
founder generally had a minimal impact on the estimates of 
the mediation effect. However, ignoring both confounders’ 
measurement models led to significant underestimation and 
severe negative relative bias. The coverage rates were signifi
cantly reduced, except when the confounding effect was 
medium in size. The power decreased when the measure
ment model for the confounder was ignored, particularly 
with medium-sized confounding effects. RMSE increased 
with ignored measurement models, especially with larger 
mediation and confounding effects.

Ignoring confounders overestimated the mediation effect, 
particularly with medium-sized confounding effects. Larger 
sample sizes slightly mitigated this bias. Coverage rates were 
significantly affected, particularly with medium-sized con
founding effects, and larger sample sizes reduced coverage 
rates due to narrower credible intervals. Ignoring 

confounders inflated the power with large confounding 
effects, aligning with the observed overestimation of medi
ation effects. RMSE increased when confounders were 
ignored, especially with larger mediation and confounding 
effects.

6.2. Suggestions for Practitioners of Latent Mediation 
Analysis

Our simulation study emphasizes the vital importance of 
accurate model specification, thoughtful prior selection, and 
sufficient sample sizes in Bayesian latent mediation analysis 
to achieve robust and reliable results.

6.2.1. Accurate Model Specification of the Mediator
Correctly specifying measurement models for mediators is 
crucial. Ignoring measurement structures (e.g., cross-load
ings) or using simplified representations (e.g., standardized 
total scores) can introduce significant bias, reduce coverage 
rates, and weaken statistical power. Researchers should 
avoid using aggregate scores and instead incorporate the full 
measurement structure of latent mediators and confounders. 
To achieve this, they should rigorously evaluate the theoret
ical basis of their models and ensure that the measurement 
models align with the data to prevent misspecifications.

Figure 10. Root mean square error (RMSE) with a sample size 100. The grid’s columns represent different mediation effects, while the rows correspond to varying 
magnitudes of the confounding effect. Each spaghetti line represents a specific prior specification.
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To assess the fit of the measurement model of the medi
ator, researchers can use fit indices commonly applied in 
structural equation modeling (such as BRMSEA, BCFI, and 
BTLI) along with the general Bayesian fit indices (such as 
DIC, BIC, and PPP).

6.2.2. Addressing Confounders
Based on our findings, we would recommend researchers 
avoid using standardized total scores for latent confounders 
in the mediator–dependent variable path; instead, incorpor
ate the full measurement structure. For unmeasured con
founders, consider alternative approaches, such as modeling 
correlated residuals among indicators, as suggested by 
Zhang and Wang (2024). However, their effectiveness in 
latent mediation analysis should be assessed through sensi
tivity analyses.

6.2.3. Careful Prior Selection
For correctly specified models with medium or large medi
ation effects, both diffuse and weakly informative priors 
yield similar estimates, making them safe choices in these 
scenarios. However, when the mediation effect is small, 
prior selection becomes critical.

We acknowledge that in applied research the true param
eter value is unknown and that researchers must rely on 
prior knowledge to inform their priors. Therefore, careful 
consideration of prior selection is essential to minimize bias, 
particularly when measurement error is present or when 
model assumptions may be violated.

6.2.4. Adequate Sample Sizes
When the model is correctly specified, larger sample sizes 
consistently enhance the accuracy of parameter estimates, 
increase statistical power, and reduce RMSE. For medium to 
large mediation effects, a sample size of 200 or more is gen
erally sufficient to detect the mediation effect. However, 
detecting smaller mediation effects requires a substantially 
larger sample size.

By following these guidelines, researchers can mitigate 
common sources of bias and strengthen the validity and 
reliability of their findings in Bayesian latent mediation 
analysis.

6.3. Limitations and Future Directions of Research

This study has several limitations that should be acknowl
edged. First, our investigation focused on a specific set of 
model misspecifications, including incorrect or ignored 
measurement models for the mediator, ignored measure
ment models for the confounder, and the omission of con
founders. However, other types of misspecifications, such as 
those in the structural model or violations of the normality 
assumption, were not considered. Future research should 
consider a broader array of model misspecifications, includ
ing those in the structural model, non-normal distributions 
of latent variables, and violations of other statistical 

assumptions. This will provide a more comprehensive 
understanding of the robustness of Bayesian estimation 
methods.

Second, this study focused on diffuse priors and weakly 
informative priors with varying levels of accuracy. Future 
research should expand the scope to include a broader range 
of prior distributions, such as highly informative priors, 
alternative diffuse priors, and empirically derived priors. 
Exploring these variations would provide deeper insight into 
the sensitivity of Bayesian estimates to the prior specifica
tions and enhance the robustness of Bayesian latent medi
ation analysis.
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