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ABSTRACT

Mediation analysis is widely used to examine whether a third variable mediates the relationship
between two variables. Latent mediation analysis extends this framework to latent variables measured
through observable indicators, combining measurement models and mediation paths. Accurate infer-
ence in latent mediation analysis depends on two critical assumptions: the correct specification of the
measurement model and the absence of unmeasured confounders. However, these assumptions are
often violated in practice. This study estimates latent mediation models within a Bayesian framework
and investigates how specification errors and prior choices affect parameter estimates through a sys-
tematic simulation study. Specifically, we examine four typical specification errors: (1) misspecified
(e.g., ignore cross-loading) measurement model for the mediator, (2) no measurement (e.g., using total
score) models for the mediator, (3) no measurement models for confounders, and (4) ignoring con-
founders. We also evaluate the influence of prior specifications (diffuse vs. weakly informative) on
Bayesian inference. The simulation results show that model misspecifications significantly affect the
accuracy of mediation effect estimates. Standardized total scores for mediators and confounders
attenuate mediation effects, bias parameter estimates, and produce inaccurate credible intervals.
Ignoring confounders results in biased estimates, mainly when the confounding effects are medium-
or large-sized. Adopting accurate weakly informative priors improves parameter recovery, coverage
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rates, and the ability to detect the true mediation effect compared to diffuse priors.

1. Introduction

Mediation analysis is a widely used tool for examining the
causal mechanisms that link an independent variable to a
dependent variable (Baron & Kenny, 1986; Hayes, 2009).
Applications are spread across various fields, including epi-
demiology, psychology, sociology, and related disciplines
(e.g., Fritz & MacKinnon, 2007; Liu et al., 2021). The pri-
mary objective of the mediation analysis is to determine
whether the relationship between two variables X and Y is
explained (or mediated), either wholly or partially, by a
third variable (MacKinnon, 2012; Richiardi et al., 2013). For
example, the relationship between maternal education and
children’s reading achievement is mediated by the home
enrichment (Zadeh et al., 2010). In simple mediation ana-
lysis, where the variables are directly observed, regression-
based methods are typically employed to investigate the
relationships between the mediator, the independent vari-
able, and the dependent variable.

Latent mediation analysis provides a robust framework for
examining causal mechanisms among latent variables (Finch
et al., 1997; Miocevi¢ et al., 2021). This approach is particu-
larly beneficial in fields like psychology and the broader social
sciences, where many important constructs, such as

personality, intelligence, satisfaction, or stress, are not directly
observable. Instead, these constructs are measured through
various observable indicators, such as survey items or test
scores (Anderson & Rubin, 1956; Cattell, 1952).
Understanding the relationships among these constructs is of
primary interest to researchers in these disciplines. Through
latent mediation analysis, researchers can uncover the under-
lying mechanisms and causal pathways that drive observed
behaviors and outcomes (Cai et al., 2023).

A latent mediation model has two fundamental compo-
nents: the measurement and structural models (Finch et al.,
1997). The measurement model defines the relationships
between latent variables and their observed indicators,
which is crucial to account for measurement error and to
ensure that the constructs are accurately represented
(Mulaik, 2009). This part of the model helps clarify how
well the observed indicators reflect the underlying latent
constructs. The structural model then builds on this founda-
tion by capturing the direct and indirect effects among the
latent variables. This aspect of the model allows researchers
to untangle complex causal pathways, providing a detailed
understanding of how latent variables influence each other
(Derkach et al., 2019). By mapping out these pathways, the
structural model enables researchers to gain deeper insight
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into the underlying mechanisms that drive observed rela-
tionships, revealing how different latent constructs interact
to produce specific outcomes.

The Bayesian approach provides a flexible framework for
the parameter estimation and evaluation in mediation ana-
lysis (Liu et al., 2021; Wang & Preacher, 2015; Yuan &
MacKinnon, 2009). Since Yuan and MacKinnon (2009)
introduced the Bayesian framework to mediation analysis,
various methodological advancements have been made
within this perspective. Enders et al. (2013) evaluated the
performance of Bayesian estimation in handling mediation
effects when data are missing, demonstrating its robustness
under such conditions. Liu et al. (2023) proposed a general
framework for Bayesian hypothesis testing of mediation
effects using Bayes factors and investigates the potential
impact of prior odds specifications on Bayesian hypothesis.
Laghaie and Otter (2023) suggested employing Bayes
factors as a measure of conditional independence between
treatment and outcome to strengthen the causal mediation
inference. Additionally, Daniels et al. (2012) applied a non-
parametric Bayesian approach to examine causal mediation
effects, highlighting its potential for modeling complex rela-
tionships. Collectively, these studies demonstrate the adapt-
ability and effectiveness of the Bayesian framework in
addressing a range of challenges in mediation analysis.

Bayesian estimation involves specifying prior distribu-
tions for model parameters and updating these priors with
observed data through Bayes’ theorem to obtain posterior
distributions (Gelman et al,, 2014). This incorporation of
priors can address issues of insufficient information, par-
ticularly in scenarios involving complex models or small
sample sizes, where convergence might otherwise be chal-
lenging to achieve (Depaoli et al, 2019; Liu et al., 2022).
The impact of priors on inferences depends on their accur-
acy and informativeness. An accurate prior is centered near
the true parameter value, whereas an inaccurate prior devi-
ates significantly, potentially introducing bias into the pos-
terior estimates. Informative priors have a smaller variance,
reflecting greater certainty about the parameter value, while
diffuse priors have a larger variance, indicating less certainty
and providing minimal guidance to the estimation process.
The accuracy and informativeness of priors may impact the
validity of inference in latent mediation analysis. For
instance, Miocevi¢ et al. (2021) examined how the accuracy
of priors for structural paths and factor loadings influences
point and interval estimates of the mediation effect in a sin-
gle-mediator latent mediation model without confounders.
Furthermore, Miocevic and Golchi (2022) proposed an
objective procedure for creating informative priors for medi-
ation analysis based on historical data, improving precision
and power to detect mediation effects.

The accurate estimation of indirect or mediation effects
in Bayesian latent variable mediation analysis relies on the
satisfaction of several key assumptions. First, there should
be no unmeasured confounders for the paths between the
latent independent, mediator, and dependent variables. All
confounders should be measured and controlled in the ana-
lysis. Unmeasured confounders can introduce bias in the
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estimates of path coefficients, distorting the actual mediation
effect. Second, the measurement model of the latent variable
should be correctly specified. Misspecification in any part of
the measurement model can lead to an incorrect under-
standing of the latent factors and bias the inference of the
mediation effect. These assumptions are often violated in
practice. Unmeasured confounders are common in observa-
tional studies, where not all relevant variables can be con-
trolled or measured. In addition, many variables are
measured with error due to various reasons, such as imper-
fect instruments and incorrect theoretical structures of the
measurement model.

The violation of model assumptions has led to investiga-
tions into the impact of omitted confounders and measure-
ment errors in the mediator, particularly in simple
mediation analysis. Measurement error arises when the
mediator is not perfectly reliable. Fritz et al. (2016) investi-
gated the impact of the measurement error and omitted
confounders on mediation effect estimates, showing that
these factors can lead to overestimation, underestimation,
or, in some cases, unbiased estimation within the frequentist
framework. Similarly, Liu and Wang (2021) examined the
effects of measurement error and omitted confounders on
statistical inference of mediation effects, proposing a sensi-
tivity analysis procedure to mitigate these issues. Lastly,
Zhang and Wang (2024) argue that when the confounders
of the mediator M and the dependent variable Y are not
taken into account in the mediation analysis, their residuals
become correlated. To address this issue, they propose using
informative priors with a mean of 0 and a small variance
(e.g., 0.01) for the correlation parameter between the resid-
uals. Taking into account this correlation, the analysis can
partially mitigate the bias introduced by omitted confound-
ers, offering a practical solution when direct measurement
of confounders is not possible.

Incorporating latent variables into the mediation path
adds complexity, requiring correct specification of their
measurement models. Measurement models can be misspe-
cified due to incorrect theoretical assumptions, with typical
errors, including ignoring cross-loadings, and ignoring the
measurement model by using standardized total scores
rather than explicitly modeling the measurement structure
of the latent variable. The standardized total scores are cre-
ated by adding the observed indicators and rescaling the
total score (mean = 0, standard deviation = 1). Ignoring a
cross-loading is a type of misspecification often arises in
applied research when theoretical assumptions oversimplify
the relationships between observed indicators and latent var-
iables. The standardized total score condition reflects a com-
mon practice in applied research, where composite scores
are used in place of latent variables due to sample size con-
straints, model convergence challenges, or software limita-
tions. While latent variable modeling is ideal, composite
scores introduce measurement error by ignoring indicator
covariance, potentially distorting mediation estimates (Bauer
& Curran, 2016; McNeish & Wolf, 2020). Researchers may
also resort to composite scores when a single-factor model
does not fit well. Furthermore, most existing literature
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focuses on the measurement error in the mediator and
dependent variable. However, few studies have investigated
measurement errors in confounders, which may also impact
the inference of the mediation effect.

Despite their critical importance, the impact of model
assumption violations has not yet been fully explored in
latent mediation analysis. It remains to be seen how the mis-
specification of the measurement model in different parts of
the mediation model impacts the inference of the mediation
effects. Comprehensive evaluations of the effects of measure-
ment model misspecification and the omission or presence of
latent confounders on the inference of mediation effects in
latent mediation analysis are still needed. Moreover, the pres-
ence of a confounder, of which the measurement model
could also be misspecified, further complicates the inference
of the mediation effect. In the Bayesian context, the accuracy
and informativeness of priors may interact with model mis-
specification, additionally affecting the estimates of mediation
effects. For example, omitting a confounder in the mediator—
to—outcome path (1, — 1y) can inflate the estimated path
coefficient. If a prior is centered away from the true value, it
may exacerbate the bias caused by the omission of confound-
ers. Conversely, a weakly informative prior with a reasonable
center can help mitigate some of this bias. This emphasizes
the importance of careful prior selection, particularly in cases
where model assumptions may be violated.

To address the current gap in the literature, this study
conducts a simulation study to systematically assess the
impact of misspecification in measurement models of latent
variables and the omission of latent confounders on the
valid inference of mediation effects within the framework of
latent mediation analysis. Our unique focus on the measure-
ment models of mediators and latent confounders and the
presence of unmeasured latent confounders will shed new
light on the accurate inference of the mediation effect.
Additionally, we will investigate the performance of
Bayesian estimation methods under various prior specifica-
tions to determine how different priors affect parameter
estimates and overall model performance. The findings of
the simulation study will provide valuable insights into the
robustness of latent mediation analysis and offer guidelines

for improving the accuracy of mediation effect estimation
using latent variables.

The remainder of this article is organized as follows:
First, we overview the simple and latent mediation models.
Next, we delve into Bayesian estimation methods within a
general framework. We then outline our simulation design
and describe various types of model misspecification.
Following this, we present the simulation results. Finally, we
conclude the study by discussing current developments rele-
vant to the application of these models, as well as future
methodological research directions.

2. Latent Mediation Analysis

This section will begin with a brief overview of simple
mediation analysis and its extension to latent mediation
analysis. We will also discuss the model assumptions and
potential misspecifications in latent mediation analysis.

2.1. Simple Mediation Analysis

We briefly introduce the simple mediation analysis in a lin-
ear regression context. For notation, we use the three-vari-
able system in which an independent variable X predicts a
dependent variable Y via regression models (Baron &
Kenny, 1986), and a mediator M is included; this is demon-
strated by the diagrams in Figure 1. The diagram on the top
panel of Figure 1 portrays the total relation between the
independent and dependent variables, and the regression
equation is as follows:

Model 1:  Y; =i, +cX; + &1, (1

where the coefficient ¢ is the total effect of the independent
variable X on the dependent variable Y (not considering M),
iy is the intercept of the model and ¢; ; is the error term for
each i. The bottom panel of Figure 1 is a mediation model
with the variable M as mediator. To study the indirect effect
of X on Y through a mediator variable M, one needs to
regress M on X and then Y on both X and M,

Model 2:  M; =i, 4+ aX; + &, (2)

X

Y

a) Path diagram for the regression model.

X

Y

b) The simple mediation model with M as a mediator of the effect of X on Y.

Figure 1. Path diagrams for the regression model and the mediation model.
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Figure 2. Latent mediation model with three indicators per latent variable. The dashed lines indicate either the potential cross-loading or the paths of the poten-

tial confounders.

Model 3:  Y; = i3 + bM; + X, + ;.3 (3)

where i, and i; are the intercepts of the two regression
models. The parameter a is the coefficient of the relation
between X and M, b is the coefficient that relates the medi-
ator M to Y while controlling X, and ¢’ is the coefficient
quantifying the relationship between X and Y while control-
ling M. The two terms ¢;, and ¢;; are errors associated
with case i in these two models.

The indirect effect is the estimate of the reduction in the
predictor effect on the outcome variable when the mediator
is included in the model, that is, ¢ — ¢’ given a sample. In
general, it holds that ¢ — ¢’ = a x b when the three variables
are linearly related to each other (MacKinnon et al.,, 1995).
The rationale behind this method is that the mediation
effect depends on the degree to which the predictor changes
the mediator, represented by the coefficient a4, and the
extent to which the mediator affects the outcome variable,
represented by the coefficient b.

To fully form the mediation model, the path from X to
M to Y should be causal. Specifically, there should be no
unmeasured confounders for the X to Y relationship, the X
to M relationship, and the M to Y relationship (Imai et al.,
2010; VanderWeele, 2015; VanderWeele & Vansteelandt,
2009). In addition, if there are confounders for M and Y,
they should not be affected by the independent variable X.

2.2. Latent Mediation Analysis with Latent Confounders

In the realm of social and psychological sciences, researchers
often focus on latent traits and their relations. Psychological
traits are typically assessed using measurement scales, allow-
ing the measurement error to be addressed. The mediation
model is naturally expanded to incorporate latent variables
in this context. Our illustration of latent mediation models
is based on the single mediator model with latent variables,
as introduced by Finch et al. (1997) and Miocevi¢ et al.

(2021). The latent mediation model consists of a measure-
ment model for the independent variable, the mediator, and
the outcome variable, along with a structural model for the
indirect and direct effects among them. In the current study,
we also consider the presence of potential latent confound-
ers for the paths from the independent variables to the
mediator and from the mediator to the outcome variable,
respectively.

We present Figure 2 for an example of the latent medi-
ation model with three indicators per latent variable.

In this latent mediation model, we have ¢ as the latent
independent variable, n,, as the latent mediator, and 5y as
the latent outcome variable. To ensure generalizability, we
also consider two latent confounders: {; for the path
between & and #,,, and (., for the path between #,, and #y.

We describe the measurement model for the latent
independent variable &, the two latent confounders {; and
{, and the measurement model for the mediator #,,%, and
the latent dependent variable 1y in the following:

X1 1 31 N €]
l=Ad G ] =Ay[”ﬂ+

g nY
X9 2 d9 Yo €6

(4)

The measurement model for the independent variable &
and the two confounders includes a 9 x 3 factor loading
matrix A,. The errors 6; (i = 1,...,9) are assumed to follow
independent normal distributions, denoted as N(0, ¢3 ). For
mediator #,, and dependent variable 7y, each has 3 indica-
tors, characterized by a 6 x 2 factor loading matrix A,. The
corresponding error terms ¢ (j=1,...,6) are also follow
independent normal distributions, N(0, aﬁ}_ ).

"The independent variable & could be either exogenous or endogenous,
depending on the presence of a non-zero path from {, to &.

’The formulation assumes the absence of cross-loading; however, it can be
generalized to include cross-loadings.
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The mediation path among the latent variables is repre-
sented by the following notation:

g 0 0 o0][c¢& B 07 e

Mu|=1a 0 0| |ny|+|B Bs [Cd] + | em

Ny ¢ b 0][ny 0 By < ey
(5)

The independent variable ¢ is linked to the mediator #,,
through a. The symbols b and ¢ are the coefficient from the
mediator #,, and the independent variable & to the depend-
ent variable #y. The residuals or errors of the paths are
symbolized as e¢, ey and ey, and they follow an independ-
ent normal distribution with mean 0 and variance parame-

2 2 2
ters o7, 03, and oy,

e o: 0 0
em ~ N3 0, 0 012\/1 0 . (6)
ey 0 0 o}

In the latent mediation model, the mediation (or indir-
ect) effect is defined as a - b. This indirect effect (i.e., a - b)
represents the pathway through which the independent vari-
able ¢ influences the dependent variable 7y via the mediator
Ny It quantifies how changes in the independent variable
affect the mediator, which in turn affects the dependent
variable. The direct effect ¢ measures the influence of the
independent variable on the dependent variable that is not
mediated by #,,. When fitting the latent mediation model to
an empirical dataset, the goal is to estimate both the indirect
effect a-b and the direct effect ¢/, providing insights into
the underlying mechanisms of the relationship between the
independent and dependent variables.

2.3. Model Assumptions

Both simple and latent mediation models are essential tools
for estimating and testing the indirect or mediation effect,
denoted as ab. However, it is crucial to recognize that the
observed effect may not inherently represent the true medi-
ation effect. As discussed by VanderWeele and Vansteelandt
(2009) and VanderWeele (2015), several vital assumptions
must be satisfied to ensure valid inference.

First, it is essential that there must be no unmeasured
confounders affecting the relationships between the inde-
pendent variable (X) and the mediator (M), the mediator
(M) and the outcome variable (Y), and the independent
variable (X) and the outcome variable (Y). These assump-
tions are critical because the presence of unmeasured con-
founders can introduce bias, making the accurate estimation
of the mediation effect difficult.

In addition, the latent mediation model introduces add-
itional complexity due to the incorporation of latent varia-
bles. For the latent mediation model, it is crucial to ensure
the measurement models are correctly specified. Any mis-
specification in the measurement models can lead to a
biased understanding of the latent variables, which in turn
can bias the estimates of the mediation effect.

Meeting these assumptions can be challenging in practice.
Identifying and controlling for unmeasured confounders is

often difficult, and accurately specifying the measurement
model requires careful consideration and validation. Despite
these challenges, it is important to adhere to these assump-
tions to obtain valid and reliable estimates of mediation
effects in both simple and latent mediation models. When
these model assumptions are violated, the model becomes
misspecified, resulting in a poor fit to the empirical data.
Thus, violations of model assumptions fundamentally reflect
issues of model specification.

3. Bayesian Estimation

The Bayesian estimation framework provides enhanced
flexibility for estimating SEM models, as shown by Muthén
and Asparouhov (2012). It is particularly advantageous for
complex models, where traditional estimation methods may
face challenges, such as convergence issues or limited sam-
ple sizes (Depaoli, 2013). These benefits have positioned
Bayesian estimation as a valuable and increasingly utilized
approach within SEM.

Latent mediation models include both measurement
models and the structural model describing the relationship
among latent variables. Thus, they can be fitted as Bayesian
SEM models. Miocevié et al. (2021) evaluated the perform-
ance of Bayesian inference for latent mediation models
under correct model specifications.

Bayesian estimation incorporates prior beliefs for each
parameter and updates the “belief” with the collected data
through the Bayesian theorem:

P(0|data) o< P(data|0)P(0) (7)

where 6 is the collection of all model parameters to be esti-
mated, P(0|data) is the posterior distribution, P(data|0) is
the likelihood, and P(6#) is the prior of the model
parameters.

3.1. Prior Specification

In a latent mediation model, model parameters include: the
factor loadings A,’s and 4,’s, path coefficient among latent
factors a,b,c, f, f,, 5 and f,, residual variances of latent
factors oé / and residual variances of the indica-
tors 2’s.

In Bayesian estimation, the choice of priors plays a cru-
cial role in guiding parameter estimation and ensuring sta-
ble model performance, particularly in complex models like
latent mediation analysis. In our study, we selected normal
priors for the factor loadings and path coefficients as com-
monly used in both SEM and mediation analysis (e.g.,
Depaoli, 2013; Yuan & MacKinnon, 2009),

7"X/J' ~ N|:H7‘x/y’ Gix/y:| > (®)

nu/ty’

a,b,d, By ~ N[ma/bﬁ,/ﬁk, Gi/b/c’/ﬁj} 9)

The normal distribution, being symmetric, is well-suited
for representing prior knowledge or uncertainty about con-
tinuous parameters. The accuracy of a normal prior is deter-
mined by the mean hyperparameter (u), which, when set to



the true parameter value, results in an accurate prior.
Conversely, an inaccurate prior arises when pu deviates from
the true value, with the degree of inaccuracy increasing as
the deviation grows. It is worth noting that in practice,
researchers do not know the true parameter value, so speci-
fying an “accurate” prior requires setting u based on plaus-
ible parameter values informed by prior knowledge, theory,
or previous studies. In addition, the variance hyperpara-
meter (¢?) controls the informativeness of the prior by
determining its spread. A larger variance (e.g., ¢o° = 10%)
represents a diffuse prior, which provides minimal guidance
and allows the data to primarily influence the estimation
process. In contrast, a smaller variance (e.g., ¢? = 0.01)
results in a weakly informative prior that incorporates mod-
erate prior certainty without being overly restrictive, thereby
balancing prior knowledge and data-driven inference.

For the residual variance parameters (o2 /1y /Ej), we spe-
cify the inverse gamma (ZG) prior,
2
O /ey ~ L9(8:b), (10)

The inverse gamma distribution is defined over positive
values, making it suitable for variance parameters, which
must always be non-negative. The shape (a) and scale (b)
hyper-parameters control the informativeness of the ZG
prior. Small values of a and b (e.g., a = b = 0.01) produce
weakly informative priors, ensuring minimal prior influence
when little is known about the variances. Larger values,
however, reflect greater certainty about the plausible range
of variance estimates. This flexibility allows the ZG prior to
accommodate varying levels of prior knowledge while ensur-
ing computational stability (e.g., Depaoli et al., 2024; Liu
et al.,, 2016).

3.2. Posterior Inference

For SEM models, the posterior distribution often lacks a
closed-form solution due to the complexity of the model
structure and parameter dependencies. Therefore, Markov
Chain Monte Carlo (MCMC) methods are frequently
employed to approximate the posterior distribution by gen-
erating samples from it. MCMC techniques, such as Gibbs
sampling and the Metropolis-Hastings algorithm, iteratively
draw samples that converge to the target posterior distribu-
tion (Casella & George, 1992; Hastings, 1970). These poster-
ior samples are then used to estimate parameter values,
credible intervals, and other relevant quantities of interest.

In the simulation study, we will evaluate the robustness
of parameter recovery by examining the effects of different
hyperparameter settings for the normal priors. Specifically,
we will vary the priors’ accuracy (centered near or far from
the true value) and informativeness (tight versus diffuse
spread) to assess their influence on posterior estimates. This
allows us to systematically investigate the sensitivity of
Bayesian SEM estimation to prior specifications.
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Table 1. Summary of simulation factors and prior specifications.

Simulation Factor
Mediation Effect

Levels/Specifications

a=>b=0.14 (small)
a = b = 0.39 (medium)
a=>b=0.59 (large)
Pr = B, = B3 = P4 = 0 (none)
By = By = B3 = P4y = 0.14 (small)
By = B, = B3 = B4 = 0.39 (medium)
n = 100, 200, 400
True Model
Misspecified Models:
- Wrong measurement model for mediator factor
- No measurement model for mediator factor
- No measurement model for one confounder
- No measurement model for two confounders
- One ignored confounder factor
- Two ignored confounder factors
Diffuse Prior:
- ZG(—1,0) for residual variances
Weakly Informative Priors:
- Accurate: N (true, 0.5true)

- Inaccurate-1SD: N(true + v/0.1tru ,O.Strue)
- Inaccurate-2SD: N(true + 2+/0.1tru ,0.5true)

Confounding Effect

Sample Size
Model Specification

Prior Specification

4. Simulation Design

In this section, we will describe the simulation study, which
was used to assess the impact of model assumption viola-
tions on parameter estimates within the context of Bayesian
latent mediation analysis. Specifically, we will investigate the
effects of measurement model misspecification in the medi-
ator or the confounder, the omission of confounders, and
how these interact with the accuracy and informativeness of
prior distributions. In the following sections, we describe
the population model used for data generation, the param-
eter levels considered, the sample sizes, the manipulation of
model misspecifications, and the priors employed in the
simulation study. A summary of all simulation conditions is
provided in Table 1.

4.1. Population Model

We specified a single population model with confounders,
described in Figure 2. The model includes a latent inde-
pendent variable (&), a dependent variable (17y), and a latent
mediator (77,;). Each latent variable is measured by three
primary continuous items: & defined by Items X; to X3, ny,
by Items Y; to Y3, and #y by Items Y, to Ys. Paths are
defined from ¢ to 1, and 7, to ny with respective coeffi-
cients a and b respectively, and a direct path from & to 5y
with coefficient ¢.

To examine the impact of confounder omission, we
include two confounders, (., and (., each with three pri-
mary indicators: {,; loads on Items X, to X, and {, on
Items X7 to Xg. {; confounds the paths from & to #,, with
coefficients 5, and f3,, and {,, confounds the paths from #,,
to ny with coefficients f; and f,.

The primary factor loadings of all items are set as 0.7.
We also included a non-zero cross-loading from Item X; to
Ny with a value of 0.5. The factor variance for {,; and {, is
set at 1. The variance or residual variance of & is set at 1 —
2, resulting in values of 1, 0.9804, or 0.8479 depending on
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the value of f5;, to ensure that the variance of ¢ is equal
to 1.

The variances of #,, and 1y account for both the vari-
ance explained by their predictor factors and residual vari-
ance. For 1, the residual variance is calculated as
1—a? — B2 — B2, while for ny, it is 1 —b* — ¢? — 2. These
calculations make sure that the total variances for #,, and
Ny are equal to 1. The residual variance of each indicator is
set to 0.51, resulting in a unit variance for every indicator.

In this setup, the population parameters were specified in
a standardized manner, ensuring that the total variance of
each indicator and latent factor equals 1. As a result, the
estimated mediation effect represents a standardized effect,
facilitating meaningful interpretation and comparison across
different conditions.

4.2. Design Factors and Prior

The simulation design factors we consider involve manipu-
lating the mediation effect, confounding effect, sample size,
types of misspecification, and prior specifications.

4.2.1. Mediation Effect

In the population model, the coefficient ¢’ is fixed at 0.14.
The coefficients a and b are assigned values of 0.14, 0.39,
and 0.59. These values correspond to mediation effects a - b
of 0.01496, 0.1521, and 0.3481, representing small, medium,
and large effects, respectively (Liu et al., 2021).

4.2.2. Confounding Effect

We denote the path coefficients from the confounders (.
and {, to ¢ and 1y, as well as n,, and 5y as B, B, fs,
and f,. These coefficients take values of 0, 0.14, and 0.39,
which represent no confounding effect, a minor confound-
ing effect, and a medium confounding effect, respectively.
For simplicity, we set §; = 8, = f5; = f,.

4.2.3. Sample Size

Three sample sizes (n = 100, 200, and 400) are considered
to reflect the range typically found in both methodological
and applied research (e.g., Miocevi¢ et al., 2021).

4.2.4. Model Specification

The path diagram of the population model is provided in
Figure 2. Each set of parameter values represents a “true
model” for the respective simulation conditions.

In our simulation design, we examine six misspecified
models to cover different scenarios of model misspecifica-
tions across measurement and structural models. Firstly, we
consider two types of measurement model misspecifications
for the mediator factor #,,: one that omits the cross-loading
from n,, to Item X7 (referred to as the “wrong measurement
model for mediator factor”) and another that uses the
standardized total score of the indicators for #,, (referred to
as the “no measurement model for mediator factor”).
Omitting the cross-loading from #,; to Item X; enables us

to evaluate the impact of disregarding the shared variance
between a confounder and the mediator on parameter
estimates.

Ignoring cross-loadings is a common form of model mis-
specification in structural equation modeling and has been
extensively examined in prior research as a prevalent issue
that can lead to biased parameter estimates and misinter-
pretation of latent constructs (e.g., Cain & Zhang, 2019;
Depaoli et al., 2024; Winter & Depaoli, 2022). This type of
misspecification often arises in applied research when theor-
etical assumptions oversimplify the relationships between
observed indicators and latent variables, potentially leading
to inaccurate conclusions. Similarly, the practice of using
standardized total scores as proxies for latent variables is
frequently observed in empirical studies due to its simplicity
and ease of implementation, despite its tendency to overlook
measurement error and the true underlying structure of the
construct (Bauer & Curran, 2016; McNeish & Wolf, 2020).

In addition to the misspecification of the mediator factor,
we consider the misspecification of the measurement models
of the confounder factors: models that ignore the measure-
ment structure of either (., (referred to as “no measurement
model for one confounder”) or both {, and {, (referred to
as “no measurement model for two confounders”). In these
“no measurement model” conditions for the confounders,
standardized total scores are used as proxies for the latent
confounders.

For structural model misspecifications, we consider mod-
els that ignore the presence of a confounder for the path
from ¢ to ny (referred to as “one ignored confounder
factor”) and models that omit both confounders {, and (.
(referred to as “two ignored confounder factors”). In prac-
tical applications, measuring all relevant confounders is
almost impossible. Hence, it is necessary to manipulate it in
the simulation.

4.2.5. Prior Specification

For the variance parameter, the inverse gamma (IG) prior is
a widely used choice in Bayesian structural equation model-
ing. As demonstrated by Asparouhov and Muthén (2010),
the priors ZG(—1,0), ZG(0,0), and ZG(1,2) have minimal
influence on parameter estimates, especially when the model
includes a reasonable number of indicators (e.g., five indica-
tors per factor). Notably, the ZG(—1,0) prior is equivalent
to a uniform prior on variance parameters, rendering it
non-informative. This makes it the default choice in Mplus,
as it allows the data to primarily inform the parameter esti-
mates without imposing strong prior assumptions. Given
these considerations, we adopted the ZG(—1,0) prior in our
simulation study to align with established best practices and
to reduce the potential for prior-induced biases.

For factor loadings and path coefficients, we selected nor-
mal priors based on previous studies such as Asparouhov
and Muthén (2010) and Depaoli (2013), which demon-
strated that both the accuracy and informativeness of nor-
mal priors can influence estimation outcomes. When
normal priors are highly diffuse, such as N(0,00) (the
default prior in Mplus), they exert minimal influence on



point estimates, even when their center deviates from the
true value. However, a certain level of informativeness is
necessary to provide meaningful guidance in estimation,
particularly in small-sample or complex models.

Following the framework proposed by Depaoli (2013), we
consider three weakly informative priors,

Weakly informative-accurate : Ay, B, a, b, ¢’ ~ N (true, 0.5true)

(11)
Weakly informative-inaccurate-1SD : A, B, a, b, ¢’
~ N (true 4+ v/0.1true, 0.5true) (12)
Weakly informative-inaccurate-2SD : A/, B, a, b, ¢
~ N (true + 2v/0.1true, 0.5true) (13)

These three weakly informative priors share the same level
of informativeness, with the prior variance set at 50% of the
true parameter value. The priors differ in terms of accuracy,
with their centers positioned at the true value (accurate),
V0.1 x true (mildly inaccurate), and 2+/0.1 X true (more
inaccurate). This design allows us to systematically assess
how varying degrees of prior accuracy influence parameter
recovery, coverage rates, and model performance, offering
practical insights into the trade-offs between prior inform-
ativeness and bias in Bayesian latent mediation analysis.

4.3. Summary

Table 1 summarizes all the simulation factors and prior spec-
ifications. We consider three levels for mediation paths, three
levels for confounding effects, three sample sizes, seven model
specifications, and four prior specifications, resulting in 3 x
3 x 3 x 7 x 4 =756 simulation cells. For each cell, 500 data-
sets were generated, and true and misspecified models were
fitted to all replicated datasets. The simulation was conducted
in Mplus (Muthén & Muthén, 1998-2017). The percentage of
converged replications was around 99.67%, with a median of
100% based on the Gelman-Rubin (R) convergence statistic.
The simulation results will be calculated based on the con-
verged replications.

In the following section, we will assess the accuracy of
parameter estimates, the 95% credible interval coverage
rates, the proportion of replications where the credible
interval excludes zero, and variations in the root mean
square error (RMSE).

5. Simulation Results

In this section, we will report on how model misspecifica-
tions in different parts of the model and the omission of
latent confounders impact the Bayesian inference of the
mediation effect. We will provide detailed information on
the accuracy of point estimates, a summary of the credible
intervals, and the power of Bayesian methods to detect the
mediation effect. Additionally, we will evaluate how the per-
formance of the Bayesian estimation method varies under
different prior specifications.
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5.1. Evaluation Criteria

Posterior inference is based on samples drawn from the pos-
terior distribution. Two Markov chains are generated for
each parameter. After the burn-in phase of 10,000 iterations,
each chain consisted of 10,000 iterations for the estimated
posterior. The summary statistics are computed based on a
total of 20,000 iterations (10,000 from each chain).
The posterior mean based on the samples is computed as
R ] 20000
0=——Y 0"

14
20000 £ (1

Given a significance level o, a posterior credible interval

of rth replication is defined as interval [L,, R,] such that
#00:00 <L} #{0":0" >R}
20000 B 10000 B

o/ 2. (15)

5.1.1. Relative Bias

Let 0 be an arbitrary parameter in the model to be esti-
mated and also its population value. Let 0, and [L,, R,] be
the posterior mean and 95% credible interval from the rth
replication. Let R be the number of replications that con-
verged’, then

(16)

= |

_ 1 &
0= }:a,
r=1

which is the average of parameter estimates across R con-
verged replications.

The accuracy of parameter estimates is evaluated using
“relative bias,” which is a ratio of bias (difference between a
point estimate and the true value of a parameter) to the
absolute true value,

-6
relative biasg = |0

(6-9)

if 040 1)

otherwise.

5.1.2. Coverage Rates of Bayesian Credible Interval
Coverage rates refer to the proportion of times that the true
parameter value is captured within the estimated credible
interval in repeated sampling or replications. It is a crucial
metric in Bayesian analysis for assessing the reliability and
validity of interval estimates. In the current study, we will
report the coverage rate of the 95% credible interval.

Let 0 be a parameter and its true value. The coverage
rate (CR) for 6 is defined as:

1 R
CRp == I(0 € [L,, R, 18

0 =g 2 O € LR (18)
where [L,,R,] is the 95% Bayesian credible interval, R is the
number of converged replications, and I(-) is an indicator
function that takes a value of 1 if the checking condition is

3The convergence is assessed based on the Proportional Scale Reduction (PSR)
factor less than 1.1 for all parameters in the model.
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true. The coverage rate is often used to assess the validity of
the Bayesian credible intervals. A coverage rate close to the
nominal one (i.e., 0.95) indicates that the statistical inference
based on credible intervals is trustworthy.

5.1.3. Bayesian “Power” for Detecting Mediation Effect

To evaluate the ability of Bayesian estimation methods to
detect the mediation effect, we calculated the proportion of
replications in which the 95% credible interval excludes
zero. This index quantifies the posterior probability of
detecting the mediation effect and is comparable to the
“power” of a study in the frequentist framework. While the
term “power” is more traditionally associated with the fre-
quentist framework, we use it here to facilitate comparisons
and enhance interpretability for readers familiar with fre-
quentist terminology.

R

power = %ZI(O ¢[L,R])

r=1

(19)

5.1.4. Root Mean Square Error
The RMSE is a metric used to quantify the average differ-
ence between estimated values and true values. Let ér be the
posterior mean of parameter 0 (also its true value is also
denoted as 0) in the 7’th replication, then
(ér - 6)2

RMSE = (20)

1
R

RMSE reflects how well the central tendency (posterior
mean) of the posterior distribution aligns with the true
value and the consistency of these estimates across all repli-
cations. Lower RMSE values indicate more accurate and
reliable estimates, whereas higher RMSE values suggest
greater discrepancies between the estimated and actual
values.

In the following sections, we present results on the accur-
acy of parameter estimates, coverage rates of credible inter-
vals, power to detect the mediation effect, RMSE, and prior
sensitivity analysis. Within each category, we examine
results for the following conditions: (1) the correctly speci-
fied model, (2) models with a misspecified or absent meas-
urement model for the mediator, (3) models without a
measurement model for the confounders, and (4) models
that omit confounders. Notably, we report results for the
misspecified measurement model and the no-measurement
model for the mediator in the same subsection, as both con-
ditions introduce measurement errors in the mediator.

5.2. Accuracy of Parameter Estimates

Figure 3 displays the relative bias in the estimates of the
mediation/indirect effect with diffuse priors across seven
models, as outlined in Table 1. The two black horizontal
lines are at —0.1 and 0.1, representing a 10% bias below and
above the true value. A relative bias within this range is
considered acceptable.

The columns of the grid represent different levels of the
mediation effect (a-b = 0.0196, 0.1521, and 0.3481), corre-
sponding to small, medium, and large mediation effects.
The rows reflect the magnitude of the paths of the con-
founders, which range from 0 (no confounding) to 0.14
(small confounding effect) to 0.39 (medium confounding
effect).

5.2.1. True Model

In most cases, the relative bias is acceptable for the true
model, except when the mediation effect is small, but the
confounding effect is medium. When the mediation effect is
small (a=0b=0.14, a-b=10.0196) and the confounding
effect is medium (0.39), the relative bias of the mediation
effect is close to 1. Under these extreme conditions, the con-
founder plays a dominating role in predicting the dependent
variable #y compared to the mediator. When the true model
is fit to the data, the relative bias in the estimates of the
mediation effect is acceptable.

5.2.2. Misspecified Measurement Model and No
Measurement Model for Mediator

In this subsection, we examine the impact of two types of
measurement model misspecifications on mediation effect
estimates: (1) a misspecified measurement model and (2) an
ignored measurement model using a standardized total
score. These two conditions are grouped together because
they both involve errors in the measurement model, though
they differ in severity. Structuring them within the same
subsection allows for clearer interpretation and direct com-
parison of their effects on parameter estimates.

For both types of errors in the measurement model of
the latent mediator, the relative bias increases notably, par-
ticularly when no confounders (ff = 0) are present or the
confounding effect is small (f = 0.14). The relative bias
ranges approximately from —0.25 to —0.75.

Using a standardized total score as the “mediator” to esti-
mate the mediation effects further reduces the accuracy of
the estimates, leading to a severe underestimation of the
mediation effect, with the relative bias exceeding —0.50.
This bias is more severe than that caused by ignoring the
cross-loading of the mediator factor.

5.2.3. No Measurement Model for Confounder

Ignoring the measurement model for the ¢ — 1, con-
founder and using the standardized total score generally
have minimal impact on the estimates of the mediation
effect. The relative bias remains acceptable (i.e., between
—0.1 and 0.1) in most cases, except when a medium con-
founding effect is coupled with a small mediation effect.
However, when the measurement model for the confounder
on the path #,; — 5y is also ignored, the mediation effect is
significantly underestimated, leading to severe negative rela-
tive bias ranging approximately —0.25 to —0.50.
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Figure 3. The relative bias of the mediation effect across seven model specifications under diffuse priors for both path coefficients and factor loadings. The col-
umns in the grid represent different mediation effects, while the rows indicate the magnitude of the confounding effect. Each panel includes two black horizontal

lines at 0.1 and —0.1, marking the acceptable range for relative bias.

5.2.4. Ignoring Confounders
Omitting confounders introduces substantial bias, especially
when the confounding effect is medium-sized. In the current
design, the path coefficients of the confounders are positive.
When these confounders are ignored, the mediation effect is
severely overestimated with a relative bias approaching 1.
However, when the confounding effect is small (f = 0.14),
the impact of ignoring the confounder is less severe, resulting
in a relative bias of approximately 0.1-0.2.

Larger sample sizes reduce relative bias for the true model
and lightly reduce the bias for the model that uses the stand-
ardized total scores for the mediator or the confounder.

5.2.5. Summary
With no misspecification, the Bayesian estimate of the indir-
ect effect is accurate, except when the indirect effect is
small, while the confounding effect is medium.
Misspecifying the mediator’s measurement model signifi-
cantly increases bias, particularly when no confounders are
present or the confounding effect is small. Utilizing a stand-
ardized total score for the mediator exacerbates this bias,
more so than ignoring cross-loadings. Neglecting the meas-
urement model for confounders has minimal impact when
the confounding effect is small; however, medium con-
founding coupled with a small mediation effect leads to

unacceptable bias. Omitting the measurement model for
confounders on the #,; — ny path results in severe under-
estimation of the mediation effect.

Finally, ignoring confounders leads to substantial over-
estimation of the mediation effect, especially when the con-
founding effect is medium. Larger sample sizes mitigate bias
across all scenarios, with the greatest benefit observed under
the correctly specified model.

5.3. Coverage Rates of the Credible Intervals

Figure 4 shows the coverage rate of the 95% credible inter-
vals of the mediation effect. The two black horizontal refer-
ence lines are at 0.95 and 0.5. A coverage rate of around
0.95 is preferable. The columns of the grid represent differ-
ent levels of the mediation effect (a-b = 0.0196, 0.1521,
and 0.3481), corresponding to small, medium, and large
mediation effects, respectively. The rows reflect the magni-
tude of the coefficients for the paths of the confounders.

5.3.1. True Model

For the true model, the coverage rates are around 0.95 con-
sistently for all conditions. This fact shows that the Bayesian
estimation with diffuse priors estimates the credible interval
accurately.
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Figure 4. The coverage rates of the 95% Bayesian credible intervals of the mediation effect across seven model specifications when the diffuse priors are used.
The columns in the grid represent different mediation effects, while the rows indicate the magnitude of the confounding effect. Each panel includes two black hori-

zontal lines at 0.5 and 0.95. A coverage rate close to 0.95 is acceptable.

5.3.2. Misspecified ~Measurement Model and No
Measurement Model for Mediator

Similar to the discussion on parameter estimate accuracy
above, we examine the coverage rates for models with a
misspecified measurement model and those without a meas-
urement model for the mediator in the same subsection for
comparison.

When the measurement model of the latent mediator is
misspecified (i.e., ignoring the cross-loading), the coverage
rates of the 95% credible interval fall below 0.95. As the
confounding effect increases, the coverage rates deteriorate
further.

When the measurement model is ignored, and the stand-
ardized total score is used, the coverage rates drop even

more significantly. They can be as low as 50%.

5.3.3. No Measurement Model for Confounders

When the measurement structure of the confounders is
ignored, standardized total scores are used instead. When
only the confounder for the ¢ — n,, path ignores the meas-
urement model, the coverage rates remain close to 0.95.
However, when the measurement models for both con-
founders are ignored, the coverage rates drop significantly.
This issue is more severe when there is no true confounding
effect or when the confounding effect is minor (1 = 0.14).

Interestingly, when the confounding effect is medium-sized
(f = 0.39), the coverage rates return to around 0.95. This
pattern highlights the complexity and varying influence of
confounding effects on coverage rates in latent mediation
analysis.

5.3.4. Ignoring Confounders

When the path coefficient of the confounders is small
(p = 0.14), ignoring the confounders has little impact on
the coverage rates of the mediation effect. However, when
the coefficient of the confounder is medium-sized
(p =0.39), the coverage rates of the mediation effect drop
severely.

Based on the results shown in Figure 4, we also observe
that the coverage rates decrease with larger sample sizes.
This occurs because larger sample sizes result in narrower
credible intervals, which can lead to lower coverage rates.

5.3.5. Summary
For the true model, coverage rates consistently approximate
0.95 across all conditions, demonstrating the accuracy of
Bayesian estimation with diffuse priors.

Misspecifying the mediator’s measurement model, such
as ignoring cross-loadings, reduces coverage rates,



particularly when the confounding effect is medium-sized.
Using standardized total scores for the mediator leads to
even more significant declines, with coverage rates dropping
to as low as 50%.

Ignoring the measurement model for confounders produ-
ces mixed results. When only the confounder for the ¢ —
Ny path lacks a measurement model, coverage rates remain
close to 0.95. However, when both confounders use standar-
dized scores, coverage rates drop significantly, especially
with no or minor confounding effects. Medium confounding
effects (ff = 0.39) appear to mitigate this decline. Omitting
confounders results in severe coverage rate reductions when
the confounding effect is medium-sized, whereas minor
effects have little impact.

5.4. Power for Detecting the Mediation Effect

Figure 5 demonstrates the ability of the Bayesian estimation
method to detect the mediation effect. As in the other plots,
the columns represent the magnitudes of the mediation
effect, and the rows correspond to the values of the path
coefficients for the confounders. The two horizontal lines
represent a power of 0.90 and 0.50, respectively.
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5.4.1. True Model

When fitting the true model, the power to detect the medi-
ation effect increases as the mediation effect becomes larger.
When the true mediation effect is 0.0196, the power can be
as low as 0.5. For a medium-sized mediation effect of
0.1521, the power to detect the mediation effect exceeds
0.90 for sample sizes of 200 and above. With a large medi-
ation effect of 0.3481, the power to detect the effect reaches
0.80, even for sample sizes as small as 100. Overall (and as
would be expected), the power increases as the sample size
becomes larger.

Moreover, the magnitude of the confounding effect also
impacts the power to detect the mediation effect. As the
path coefficient of the confounder increases from 0 to 0.39,
the power drops slightly.

5.4.2. Misspecified Measurement Model and No
Measurement Model for Mediator

For both the misspecified measurement model (i.e., omitting
a cross-loading) and the no measurement model for the
mediator (i.e., use the standardized total score), the power
to detect the mediation effect is lower than in the true

model. For a small mediation effect, the power remains
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Figure 5. The power to detect the true mediation effect under diffuse priors. The grid’s columns represent different mediation effects, while the rows correspond
to varying magnitudes of the confounding effect. Each panel includes two black horizontal lines indicating power thresholds of 0.90 and 0.50, respectively.
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below 0.25, even with a large sample size of 400. The power
to detect a medium-sized mediation effect reaches 0.90 with
a sample size of 200 and greater, provided there is no true
confounder (f =0). The power is even higher for a large
mediation effect (i.e., 0.3481), indicating that the chance of
detecting the mediation effect can still be high with medium
or large mediation effects. As expected, the power increases
with larger sample sizes and greater true mediation effects
but drops as the confounding effect becomes more
substantial.

5.4.3. No Measurement Model for Confounders

The power to detect the mediation effect decreases signifi-
cantly when the measurement model of the confounders is
ignored. This impact is more notable when the mediation
effect is small or medium. As the confounding effect
increases, the power decreases further, especially when the
sample size is small and the confounding effect is large.
However, a larger sample size can mitigate the effect of
ignoring confounders and maintain relatively high power to
detect the mediation effect.

5.4.4. Ignoring Confounders
When the confounding effect is null or small (f = 0.14),
ignoring confounders has little impact on the power to
detect the mediation effect. However, when the confounding
effect is large, ignoring the confounders inflates the power.
To further understand this phenomenon, we refer back
to the relative bias in Figure 3. When confounders are
ignored, the covariation due to confounders is misattributed
to the estimated mediation path, inflating the estimates of
the mediation effect in proportion to the level of confound-
ing effect under consideration.

5.4.5. Summary
Across all misspecified models, the power to detect the
mediation effect suffers most from the misspecification of
the measurement model for the latent mediator. The power
also decreases due to the misspecification of the measure-
ment model for the latent confounder. The impact of ignor-
ing the latent confounder is mixed and depends on whether
the mediation effect estimates are overestimated or
underestimated.

A large sample size consistently promotes the power to
detect the mediation effect, as well as the sign of the medi-
ation effect.

5.5. Root Mean Square Error

Figure 6 demonstrates the RMSE for different model specifi-
cations. As in the other plots, the columns are the levels of
the mediation effect, and the rows are the magnitudes of the
path coefficient of the confounders. Each of the lines repre-
sents a sample size condition.

The RMSEA decreases as the sample size increases and
the true mediation effect decreases. Additionally, the RMSE
becomes larger as the confounding effect grows.

Among the seven models, ignoring confounders and
using standardized total scores for latent mediators results
in larger RMSEs compared to other models.

5.6. Prior Sensitivity Analysis

In the above analysis, we evaluated the accuracy of point
estimates, the coverage of the posterior credible interval,
and the power of each model to detect the mediation effect,
focusing on diffuse priors. In empirical data analysis, weakly
informative priors are often adopted to improve conver-
gence for complex models while balancing the incorporation
of prior knowledge with maintaining objectivity in infer-
ence. Therefore, we aim to assess how the accuracy and
level of informativeness of the prior impact the performance
of Bayesian estimation of the latent mediation model and
how  prior  specification interacts  with  model
misspecification.

In the current study, we varied the normal priors for the
path coefficient and the factor loading parameters. We set
the variance of the normal prior at 0.5 X true to mimic the
weakly informative prior. By adjusting the center of the nor-
mal distribution, we manipulated the level of accuracy of
the priors. We considered three levels of accuracy: with the
center of the normal prior set at the true value, /0.1 X true
greater than the true value, and 24/0.1 X true greater than
the true value. These three weakly informative priors are
called Weakly Informative Accurate (WI-Acc), Weakly
Informative Inaccurate with the center deviated by
v/0.1 x true from the true value (WI-InAcc-1SD), and
Weakly Informative Inaccurate with the center deviated by
24/0.1 x true from the true value (WI-InAcc-2SD).
Although these three priors share the same level of preci-
sion, their accuracy differs.

Our analyses indicated that the impact of weakly inform-
ative priors is not substantial for conditions with sample
sizes of 200 and 400. However, it significantly influenced
the results when the sample size was small, such as 100.
Therefore, we present the results for n = 100 for brevity.

5.6.1. Accuracy of Parameter Estimates

Figure 7 shows the relative bias in the estimates of the
mediation effect. The rows and columns of the grid repre-
sent the magnitude of the mediation effect and the levels of
the path coefficients of the confounders, respectively. In
each panel, the horizontal lines at —0.1 and 0.1 indicate the
acceptable range for relative bias. Each spaghetti plot high-
lights a different prior.

5.6.1.1. True Model. For the true model, the three weakly
informative priors and diffuse priors lead to similarly small
relative biases when the mediation effect is medium or
greater. Relative bias varies across priors primarily when the
mediation effect is as small as 0.0196. Among the four
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Figure 6. The root mean square error (RMSE) of the mediation (indirect) effect under diffuse priors. The grid’s columns represent varying mediation effects and the
rows correspond to different magnitudes of the confounding effect. Each spaghetti line in a plot represents the RMSE of a corresponding sample size.

priors, the weakly informative inaccurate prior with the cen-
ter 2 SD away from the true value (WI-InAcc-2SD) causes
severe bias, with a relative bias greater than 0.5.

5.6.1.2. Misspecified Measurement Model and No
Measurement Model for Mediator. When the measurement
model for the mediator is misspecified, all four priors
underestimated the mediation effect with similar relative
bias with mediation effect medium (0.1521) or large
(0.3481). The bias was approximately —0.10 with no con-
founding effect, —0.25 with small confounding effects, and
—0.50 with medium-sized confounding effects. When the
mediation effect is small, its estimates become more sensi-
tive to prior specification. Both the diffuse prior and weakly
accurate prior led to an underestimation of the mediation
effect. As the prior center shifted to the right, the relative
bias decreased (i.e., WI-InAcc-1SD), and with a more
extreme rightward shift (i.e., WI-InAcc-2SD), the estimates
began to overestimate the mediation effect.

With no measurement model for the mediator, the stand-
ardized total score was used, leading to a severe underesti-
mation of the mediation effect due to measurement error in
the total score. The relative bias exceeds —0.50 when using
the diffuse prior or the weakly informative accurate prior
(WI-Acc) are used. However, weakly inaccurate priors with

centers greater than the true value partially mitigate this
underestimation of the mediation effect caused by the meas-
urement error.

5.6.1.3. No Measurement Model for Confounders. When
the standardized total score is used for the confounder on
the path & — 1,,, the relative bias shows a mixed pattern
depending on the levels of the confounding effect and the
magnitude of the mediation effect. The distinction among the
four priors is minimal when the mediation effect is medium
or large. However, when the mediation effect is small
(0.0196), there is a noticeable distinction among priors. The
diffuse prior and the weakly informative accurate prior
underestimate the mediation effect. In contrast, the two
weakly informative inaccurate priors (WI-InAcc-1SD and
WI-InAcc-2SD) overestimate the mediation effect, especially
when the path coefficient of the confounders is small. When
both confounders use the standardized total score, the medi-
ation effect is underestimated across all priors, particularly
when the path coefficients of the confounders are small.

5.6.1.4. Ignoring the Confounder. When confounders are
ignored, the relative bias exceeds acceptable thresholds
(> 10%), particularly when the confounding effect is
medium (0.39).
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Figure 7. The relative bias of the mediation effect estimates across various prior specifications with a sample size of 100. The grid’s columns represent different
mediation effects, while the rows correspond to varying magnitudes of the confounding effect. The two black horizontal lines indicate the acceptable range for
relative bias, set at 0.1 and —0.1. Each spaghetti line represents a specific prior specification.

When the mediation effect is small (0.0196), notable dif-
ferences emerge among the four types of priors. With dif-
fuse priors or weakly informative accurate priors (WI-Acc),
the relative bias remains less severe and within an accept-
able range (—10% to 10%). However, as the center of the
weakly informative priors shifts further to the right, medi-
ation effects become increasingly overestimated. Specifically,
under the WI-Acc-1SD prior, the relative bias reaches
approximately 0.25, and with the WI-InAcc-2SD prior, it
exceeds 0.50.

In summary, the analysis demonstrates that both prior
selection and model specification play a critical role in influ-
encing relative bias in mediation effect estimates. For the
true model, all priors yield similar results for medium or
large mediation effects; however, weakly informative
inaccurate priors result in severe bias for small effects.
When the mediator’s measurement model is misspecified,
measurement error leads to underestimation of the medi-
ation effect, though weakly inaccurate priors help mitigate
this bias. For confounders, the use of standardized total
scores produces mixed biases based on the mediation and
confounding effects, with severe underestimation observed
when both confounders lack adequate measurement models.
Ignoring confounders causes significant biases, especially
with diffuse priors, while weakly inaccurate priors partially

reduce this bias. These findings highlight the necessity of
precise prior selection and accurate model specification to
achieve robust and reliable inference in Bayesian mediation
analysis.

5.6.2. Coverage Rates of Credible Intervals

Figure 8 illustrates the coverage rates of the 95% credible
interval, representing the proportion of replications in which
the credible interval covers the true mediation effect. As an
index of the validity of the credible interval estimates, a
coverage rate of around 0.95 is desired. In each panel of the
plots, the top horizontal line in black indicates a coverage
rate of 0.95.

Based on the results, the priors have little impact on the
coverage rates, except in scenarios where the total scores are
used for the latent confounders or the confounders are
ignored and the path coefficient of the confounders is
medium (i.e., f = 0.39).

When using the total score for the confounders, using
the diffuse prior leads to a slightly higher coverage rate.

5.6.3. “Power” for Detecting Mediation Effect
Figure 9 illustrates the power to detect the mediation effect

across different prior specifications, magnitudes of
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Figure 8. The coverage rates of the 95% Bayesian credible intervals with a sample size 100. The grid's columns represent different mediation effects, while the
rows correspond to varying magnitudes of the confounding effect. The two black horizontal lines represent the coverage rate 0.50 and 0.95. Each spaghetti line

represents a specific prior specification.

mediation effects, and levels of confounding effect when the
sample size is 100. The columns represent the magnitudes
of the mediation effect (a - b = 0.0196,0.1521,0.3481), while
the rows indicate the levels of the path coefficients of con-
founders (f = 0,0.14,0.39). The plots compare the power
across four different prior specifications: diffuse prior,
Weakly Informative Accurate (WI-Acc), Weakly Informative
Inaccurate with 1 SD deviation (WI-InAcc-1SD), and
Weakly Informative Inaccurate with 2 SD deviation (WI-
InAcc-2SD),

For the true model, the power to detect the mediation
effect increases with its magnitude. For small mediation
effects (0.0196), the power is low across all priors. For
medium (i.e., 0.1521) mediation effects, the power exceeds
0.60 for weakly informative priors and reaches 0.90 for the
larger mediation effect (0.3481) when the sample size is 100.

The diffuse prior leads a lower power than the weakly
informative priors (WI-Acc, WI-InAcc-1SD, and WI-InAcc-
28SD), especially for medium and large mediation effects.
When the mediation effect is large, all models have large
power to detect it, except when the mediator model is mis-
specified and the confounding is large. For small mediation
effects, the difference in power among priors is less pro-
nounced, with all priors performing similarly poorly.

As the confounding effect increases from =0 to =
0.39, the power to detect the mediation effect decreases
slightly across all priors. When the confounding effect is
small (ff = 0.14), the power remains relatively high, but it
drops noticeably when the confounding effect is
medium (f = 0.39).

The presence of model misspecifications, such as ignor-
ing the cross-loading of the latent mediator or confounders,
reduces the power across all levels of mediation and con-
founding effects.

In sum, the power to detect the mediation effect is influ-
enced by its magnitude, the level of the confounding effect,
and the specification of priors. Although weakly informative
inaccurate priors (WI-InAcc-1SD and WI-InAcc-2SD) can
mitigate some biases, they also exhibit higher power in
detecting mediation effects, particularly for small mediation
effects.

5.6.4. Root Mean Square Error
The RMSE for conditions with a sample size of 100 is pre-
sented in Figure 10.

For all prior conditions, the RMSE increases as the medi-
ation effect amplifies and as the path coefficient of the con-
founders becomes larger. With the diffuse prior, the RMSE
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Figure 9. Power for detecting the mediation effect with a sample size 100. The grid's columns represent different mediation effects, while the rows correspond to
varying magnitudes of the confounding effect. The two black horizontal lines represent the power 0.50 and 0.90. Each spaghetti line represents a specific prior

specification.

is larger than with weakly informative priors, and this dis-
tinction becomes more apparent for larger mediation effects
and confounder path coefficients.

6. Concluding Remarks

As mediation analysis among latent variables continues to
gain popularity, it is vital to thoroughly understand the per-
formance and impact of specification errors. Including the
measurement model for latent variables aims to enhance the
accurate understanding of these latent constructs. However,
incorporating latent variables also increases the complexity
of a model. Accurate inference of the mediation effect relies
on two key assumptions: first, there are no unmeasured
confounders; second, the measurement model is correctly
specified. Unfortunately, these assumptions are often vio-
lated in practice. It is challenging to measure and control all
relevant confounders, and the measurement model of latent
variables can be misspecified. Furthermore, confounders
could be latent variables, and their measurement models
could be misspecified or omitted.

6.1. Summary of the Findings

In this study, we investigated the performance of the
Bayesian estimation method in estimating the mediation

effect, focusing on how this performance varies with viola-
tions of the model assumptions. Specifically, we examined
the impact of incorrect or ignored measurement models for
the mediator, ignored measurement models for the con-
founder, and omission of confounders. Furthermore, we
assessed how model misspecifications interact with prior
specifications and impact the performance of Bayesian
methods in estimating the mediation effect. We considered
both diffuse priors and weakly informative priors with dif-
ferent levels of accuracy to mimic practical implementation.

For the correctly specified (true) model, Bayesian estima-
tion can accurately estimate the mediation effect with an
acceptable relative bias, especially with medium or large
mediation effect. The coverage rates were consistently
around 0.95, indicating reliable Bayesian estimation with
diffuse priors. The power to detect the mediation effect
increased with larger mediation effects and sample sizes, but
diffuse priors generally resulted in lower power compared to
weakly informative priors. RMSE increased with larger
mediation and confounding effects, but larger sample sizes
reduced RMSE, improving the accuracy of parameter
estimates.

With misspecified measurement models for the latent
mediator, the relative bias increased notably, especially when
there were no confounders or when the confounding effect
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Figure 10. Root mean square error (RMSE) with a sample size 100. The grid’s columns represent different mediation effects, while the rows correspond to varying
magnitudes of the confounding effect. Each spaghetti line represents a specific prior specification.

was small. Using standardized total scores further reduced
accuracy, leading to unacceptable bias. The coverage rates
dropped significantly, particularly with no or minor con-
founders. The power to detect the mediation effect also suf-
fered, especially with small mediation effects, although
larger sample sizes and higher mediation effects improved
power. RMSE increased with misspecified measurement
models, especially with larger mediation and confounding
effects.

Ignoring the measurement model for the ¢ — n,, con-
founder generally had a minimal impact on the estimates of
the mediation effect. However, ignoring both confounders’
measurement models led to significant underestimation and
severe negative relative bias. The coverage rates were signifi-
cantly reduced, except when the confounding effect was
medium in size. The power decreased when the measure-
ment model for the confounder was ignored, particularly
with medium-sized confounding effects. RMSE increased
with ignored measurement models, especially with larger
mediation and confounding effects.

Ignoring confounders overestimated the mediation effect,
particularly with medium-sized confounding effects. Larger
sample sizes slightly mitigated this bias. Coverage rates were
significantly affected, particularly with medium-sized con-
founding effects, and larger sample sizes reduced coverage
rates due to narrower credible intervals. Ignoring

confounders inflated the power with large confounding
effects, aligning with the observed overestimation of medi-
ation effects. RMSE increased when confounders were
ignored, especially with larger mediation and confounding
effects.

6.2. Suggestions for Practitioners of Latent Mediation
Analysis

Our simulation study emphasizes the vital importance of
accurate model specification, thoughtful prior selection, and
sufficient sample sizes in Bayesian latent mediation analysis
to achieve robust and reliable results.

6.2.1. Accurate Model Specification of the Mediator
Correctly specifying measurement models for mediators is
crucial. Ignoring measurement structures (e.g., cross-load-
ings) or using simplified representations (e.g., standardized
total scores) can introduce significant bias, reduce coverage
rates, and weaken statistical power. Researchers should
avoid using aggregate scores and instead incorporate the full
measurement structure of latent mediators and confounders.
To achieve this, they should rigorously evaluate the theoret-
ical basis of their models and ensure that the measurement
models align with the data to prevent misspecifications.
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To assess the fit of the measurement model of the medi-
ator, researchers can use fit indices commonly applied in
structural equation modeling (such as BRMSEA, BCFI, and
BTLI) along with the general Bayesian fit indices (such as
DIC, BIC, and PPP).

6.2.2. Addressing Confounders

Based on our findings, we would recommend researchers
avoid using standardized total scores for latent confounders
in the mediator-dependent variable path; instead, incorpor-
ate the full measurement structure. For unmeasured con-
founders, consider alternative approaches, such as modeling
correlated residuals among indicators, as suggested by
Zhang and Wang (2024). However, their effectiveness in
latent mediation analysis should be assessed through sensi-
tivity analyses.

6.2.3. Careful Prior Selection

For correctly specified models with medium or large medi-
ation effects, both diffuse and weakly informative priors
yield similar estimates, making them safe choices in these
scenarios. However, when the mediation effect is small,
prior selection becomes critical.

We acknowledge that in applied research the true param-
eter value is unknown and that researchers must rely on
prior knowledge to inform their priors. Therefore, careful
consideration of prior selection is essential to minimize bias,
particularly when measurement error is present or when
model assumptions may be violated.

6.2.4. Adequate Sample Sizes

When the model is correctly specified, larger sample sizes
consistently enhance the accuracy of parameter estimates,
increase statistical power, and reduce RMSE. For medium to
large mediation effects, a sample size of 200 or more is gen-
erally sufficient to detect the mediation effect. However,
detecting smaller mediation effects requires a substantially
larger sample size.

By following these guidelines, researchers can mitigate
common sources of bias and strengthen the validity and
reliability of their findings in Bayesian latent mediation
analysis.

6.3. Limitations and Future Directions of Research

This study has several limitations that should be acknowl-
edged. First, our investigation focused on a specific set of
model misspecifications, including incorrect or ignored
measurement models for the mediator, ignored measure-
ment models for the confounder, and the omission of con-
founders. However, other types of misspecifications, such as
those in the structural model or violations of the normality
assumption, were not considered. Future research should
consider a broader array of model misspecifications, includ-
ing those in the structural model, non-normal distributions
of latent variables, and violations of other statistical

assumptions. This will provide a more comprehensive
understanding of the robustness of Bayesian estimation
methods.

Second, this study focused on diffuse priors and weakly
informative priors with varying levels of accuracy. Future
research should expand the scope to include a broader range
of prior distributions, such as highly informative priors,
alternative diffuse priors, and empirically derived priors.
Exploring these variations would provide deeper insight into
the sensitivity of Bayesian estimates to the prior specifica-
tions and enhance the robustness of Bayesian latent medi-
ation analysis.
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