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ABSTRACT

Confirmatory factor analysis (CFA) using polychoric correlations has become standard in psychometric
and item analyses. Nevertheless, sparse data can lead to non-positive definite (NPD) polychoric correl-
ation matrices, posing notable challenges. Smoothing algorithms to address this issue can play an
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important role in eliminating noise and enhancing signal quality. In the present article, simulation
studies were conducted to compare the eigenvalue-based smoothing methods, semidefinite dual
approaches, and Sylvester’s criterion smoothing methods. They all aim to transform NPD matrices into
positive definite ones, but differ in technique. To address the limitations of these methods, a new

smoothing algorithm is proposed at the end.

1. Introduction

In Structural Equation Modeling (SEM) and Confirmatory
Factor Analysis (CFA), relationships between latent constructs
and observed indicators are typically modeled using correl-
ation or covariance matrices (Kline, 2023). While Pearson cor-
relations are suitable for continuous data, they can
underestimate associations in ordinal data due to the unequal
spacing between categories (Olsson, 1979; Robitzsch, 2020).
Polychoric correlations address this limitation by assuming an
underlying bivariate normal distribution (Robitzsch, 2020),
making them the standard choice for analyzing ordinal data in
psychometrics (Mueller & Hancock, 2015). However, estimat-
ing polychoric correlations can be computationally demand-
ing, as it involves multidimensional integrals. A computational
workaround implies estimating each correlation for pairs of
variables, but the process often yields non-positive definite
(NPD) matrices (i.e, matrices with one or more negative
eigenvalues), especially when data are sparse, which can com-
plicate model estimation (Ekstrom, 2011).

Smoothing algorithms have emerged as essential tools for
converting NPD polychoric matrices into positive definite
forms. The application and evaluation of smoothing algo-
rithms in Exploratory Factor Analysis (EFA) and Principal
Component Analysis (PCA) have been extensively studied
over the past few decades. Hayashi and Marcoulides (2006)
offer an in-depth overview of this issue in the context of
exploratory factor analysis, with a more recent discussion by
Maroco (2024).

Debelak and Tran (2013) conducted one of the founda-
tional studies on the accuracy of parallel analysis when

applied to potentially non-positive definite (NPD) tetrachoric
correlation matrices. Their work focused on dimensionality
recovery using three distinct smoothing methods: (a)
the Higham alternating-projections algorithm (Higham,
2002), (b) the Bentler and Yuan algorithm (Bentler & Yuan,
2011), and (c) the Knol and Berger algorithm (Knol &
Berger, 1991). Their study highlighted the importance of
smoothing for improving dimensionality assessment in tet-
rachoric correlation matrices. In a subsequent study, Debelak
and Tran (2016) extended their analysis to polychoric correl-
ation matrices, evaluating dimensionality recovery across a
broader range of major common factors. Building on this
work, Kracht and Waller (2022) replicated these assessments
of dimensionality in one- and two-dimensional common fac-
tor models, emphasizing the importance of ensuring that
matrices are PD before analyzing them.

Lorenzo-Seva and Ferrando (2020) investigated the
causes, consequences, and potential solutions for non-
positive definite (NPD) polychoric correlation matrices in
Exploratory Item Factor Analysis. They evaluated five
smoothing methods: (a) least-squares smoothing (Knol &
ten Berge, 1989), (b) linear smoothing via a ridge penalty
(Joreskog & Sorbom, 1981), (c¢) non-linear smoothing
(Devlin et al., 1975, 1981), (d) the Bentler-Yuan algorithm
(Bentler & Yuan, 2011), and (e) a novel “sweet smoothing”
algorithm proposed by Lorenzo-Seva and Ferrando them-
selves. Their study included simulations comparing the per-
formance of the Bentler-Yuan and sweet smoothing
algorithms, highlighting the relative merits of each.

Further contributions were made by Nilforooshan (2020),
who examined three additional methods: (a) an iterative
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weighting procedure (Jorjani et al., 2003), (b) the unweighted
bending procedure (Schaeffer, 2014), and (c) a method pro-
posed by Bock et al. (1988). Nilforooshan evaluated the differ-
ences between pre- and post-smoothing results across
covariance matrices, correlation matrices, and ill-conditioned
matrices. This study broadened understanding of the practical
effects of smoothing, clarified when such approaches are neces-
sary, and compared the relative advantages of each method.

Despite advances in exploratory contexts, research on
smoothing algorithms for confirmatory factor analysis
remains underdeveloped. The present study addresses this
critical gap through systematic simulations evaluating (a)
convergence rates, (b) parameter estimation accuracy, and
(c) model fit indices in CFA applications. To help resolve
the pervasive issue of non-positive definite (NPD) matrices,
we propose a novel smoothing procedure inspired by
Lorenzo-Seva and Ferrando (2020).

1.1. Matrix Smoothing Algorithms

In this article, we compared six approaches proposed by
Bock et al. (1988), Knol and Berger (1991), Schaeffer (2014),
Higham (2002), and Bentler and Yuan (2011) (see Table 1).
Table 1 presents an overview of these methods, organized
by author(s), methodological type, algorithmic details, and R
packages. Based on the underlying principles, the methods
are categorized as eigenvalue-based, semidefinite dual, or
Sylvester’s criterion approaches. Our novel method (inspired
by Lorenzo-Seva & Ferrando, 2020) relies on Sylvester’s cri-
terion of PD and is categorized as such. This novel smooth-
ing method conducts a careful iterative process of Higham’s
nearest correlation approach across the principal minors. It
ensures that the correlation matrix remains as close as pos-
sible to being positive definite while extracting the appropri-
ate part of the matrix at each step (see details in Table 1 of
the last row). We also included this approach in simulation
scenarios for evaluation to assess whether it could achieve
our intended goals.

2. Methodology

A Monte Carlo simulation was implemented to compare the
six smoothing approaches, including our new approach,
using the R packages and functions presented in Table 1.
CFA was conducted on the smoothed correlation matrix
using the six approaches described above.

2.1. Data Generation

We generated simulated datasets in lavaan (Rosseel, 2012)
by implementing three factor structures: (a) a correlated
two-factor model with six binary indicators per factor
(Figure 1), (b) a one-factor model representing core applica-
tions of item response theory (IRT; Figure 2; Wirth &
Edwards, 2007), and (c) a bifactor model in which two spe-
cific factors were each measured by six binary indicators,
while a general factor was measured by all twelve indicators.
We allowed the specific factors to correlate with each other
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but specified them as orthogonal to the general factor
(Figure 3). This design facilitated the evaluation of smooth-
ing algorithm performance across commonly employed but
structurally distinct SEM configurations.

To systematically evaluate method performance, we
employed a fully crossed 3 x 3 factorial design with 1,000
replications per condition (R=1000). Factor loadings and
latent correlations were uniformly sampled across three
ranges: low (0 to 0.3), medium (0.3 to 0.6), and high (0.6 to
0.9), ensuring a comprehensive assessment of parameter
recovery under varying population conditions. Albeit
uncommon, this simulation method mimics the logic behind
the design of experiments with a random factor to ensure
conclusions generalize across the range of potential param-
eter estimates (Li & Zumbo, 2009; Shear & Zumbo, 2013).

Data sparseness is a known contributor to estimation
imprecision and the generation of non-positive definite cor-
relation matrices. We controlled the degree of sparseness
through threshold manipulation. Specifically, we simulated
binary responses by alternating thresholds of 1.25 and —1.75
across items (e.g., item 1 had a threshold of 1.25, item 2
had a threshold of —1.75, item 3 had a threshold of 1.25,
and so forth). This intentional use of extreme thresholds
induced sparseness, thereby increasing the likelihood of
non-positive definiteness. Five sample sizes (n) levels were
examined: 100, 200, 300, 500, 1000 cases (see Li, 2016a,
2016b for a similar design).

After generating the data, we conducted a series of ana-
Iytic steps to evaluate model performance. First, we per-
formed confirmatory factor analysis (CFA) using the true
population covariance matrix to derive the asymptotic
matrix (I') for standard error computation. Next, we calcu-
lated the polychoric correlation matrix from the simulated
data and applied five distinct smoothing methods to address
potential non-positive definiteness. Finally, we fitted the cor-
rect factor model to each smoothed matrix to assess conver-
gence rates, parameter recovery, and overall model fit.

2.2. Simulation Outcomes

2.2.1. Convergence

Since small samples are known to induce issues of model
non-convergence in SEM, the proportion (M) of non-
convergent models was recorded.

2.2.2. Bias
The raw bias of each simulation condition, B(0.) was calcu-
lated as:

B(Oc) = (RN)_lzleziﬂ(A)cri - Ocri)’ (1)

where @m- is the i parameter estimate for replication r in
condition ¢, 0, is the corresponding true population par-
ameter. Here, R = 1000 denotes the total number of replica-
tions, and N represents the total number of estimated
parameters. This formula computes the average difference
between estimated and true parameter values across all
parameters and replications. We systematically compared
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Table 1. Matrix of smoothing algorithms.

Author(s)

Type

Algorithm

R function

Bock et al. (1988)

Knol and Berger
(1991)

Schaeffer (2014)

Eigenvalue-based

Step 1: Perform eigen-decomposition of the matrix: A = QAQ™", where Q is the
matrix of eigenvectors and A is the diagonal matrix of eigenvalues.

Step 2: Replace each eigenvalue /; smaller than a threshold ¢ with 100c (where ¢ is

a small constant).
Step 3: Rescale the sum of the positive eigenvalues to match the number of items,
producing diagonal matrix A’.
Step 4: Compute the new matrix using the updated eigenvalues: A =QAQ".
Step 5: Rescale the resulting matrix to a correlation matrix usmg cov2cor.
Step 1: Perform eigen-decomposition of the matrix: A = QAQ~".
Step 2: Construct new eigenvalue matrix: A" = diag(max(J;, 0))
Step 3: Compute the new matrix using the updated eigenvalues: A =QAQ".
Step 4: Rescale the resulting matrix to a correlation matrix using cov2cor.
Step 1: Perform eigen-decomposition of the matrix: A = QAQ™".
Step 2: For each negative eigenvalue /;, compute a small positive value using the

cor.smooth(), ‘psych’
package (Revelle,
version 2.3.12)

smoothKB(), fungible’
package (Waller et al.,
2023, version 2.4.4)

bend(),'mbend’
(Nilforooshan,

formula: p(s — 4)?/(100s? + 1), where:

version 1.3.1)

a. p is the smallest positive eigenvalue,
b. s=2)",J is twice the sum of all negative eigenvalues,
¢. m is the number of negative eigenvalues.
Step 3: Replace negative /; with small positive values from step 2 in descending

order.

Higham (2002) semidefinite dual

Ps(A)
where (-),

Step 1: Project the matrix A onto the set of symmetric positive semidefinite
matrices S: (W~"°W~") = diag(A-1);

Step 2: Project A onto the set of matrices with unit diagonals U:

_ W71/2((W1/2Aw1/2)+)wf1/2

retains the positive semidefinite part of the matrix.

nearcorr(), ‘sfsmisc’
package (Maechler,
2024 Version 1.1-19)

Step 3: Use the Frobenius norm to measure the closeness between smoothed a)
and non-smoothed, b) matrices (Havel, 2002; Golub & Van Loan, 2013):

I|IA-BIIF = 32 37 (@ — by)?
Bentler and Yuan
(2011)

Sylvester’s criterion

b. k<0
Proposed new

Step 1: Extract all potential factors from the common factor space and identify
variables with communalities >1.

Step 2: Reduce specific correlation estimates by a context-sensitive factor k.

Step 3: Progressively decrease (:'09‘0 ;

NW) until
a. The matrix becomes positive definite, or

smoothBY(), fungible’
package (Waller et al.,
2023, version 2.4.4)

Step 1: Set the number of factors to extract r = 1.

Step 3: If no NPD is observed, increase r by 1 and repeat step 2. Otherwise:

approach Step 2: Extract r-factors from A, and check for non-positive NPD.
(inspired by

Lorenzo-Seva & a. Extract the first r+r submatrix from A.

Ferrando)

b. Apply Higham's nearest correlation smoothing to this submatrix.

¢. Replace the r+r block in A with the smoothed submatrix to create A".
Step 4: Increase r by 1 and repeat steps 2-3 until the entire matrix is reconstructed

and smoothed.
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Figure 1. Two-factor model with 12 binary items. Factor 1 is associated with 6

items, x1 through x6, while factor 2 is linked to items, x7 through x12.
Factor 1 and factor 2 are correlated.

the magnitude of these bias estimates across all simulation
conditions and smoothing methods for both (a) factor load-
ing estimates and (b) latent factor correlations.

2.2.3. Type | error rate

Since the correct model is being fitted to the data, the
p-value associated with the y° test of fit will be used to
evaluate the empirical Type I error rate. This is measured as
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Figure 2. One-factor model with 12 binary items. Factor 1 is associated with all
12 items, x1 through x12.

the proportion of p-values less than .05

replications.

across R

2.2.4. Approximate model fit

Robust Comparative Fit Index (CFI) and Robust Root Mean
Square Error of Approximation (RMSEA) are approximate
fit indices less sensitive to sample size. The CFI compares
the specified model with a baseline model, assuming no
relationships among the variables. Values closer to 1 indi-
cate a better fit, with a threshold of 0.95 or above generally
indicating a good model fit (Hu & Bentler, 1999). Values of
RMSEA less than 0.05 indicate a close fit (Browne &



Cudeck, 1992). Since the correct model is being fitted to the
data, we would expect CFI = 1.0 and RMSEA = 0.0. We
will monitor the proportion of CFI and RMSEA values dif-
ferent from these values.

3. Results

Because the results and trends were similar across the three
models, we selected the two-factor model as a representative
example to describe in detail. Results for the other two
models are provided in the supplementary material. For the
two-factor model, we present the results of the Monte Carlo
study as follows. First, we report the average bias for factor
loadings and latent factor correlations, along with their 95%
confidence intervals. Second, we summarize the Type I error
rates, RMSEA, and CFI values according to the different
simulation conditions.

3.1. Convergence

The simulation results revealed differences in convergence
rates across methods (see Figure 4). In the first panel of this
figure, results were grouped by model type. Specifically, LL,
ML, and HL referred to low, moderate, and high factor
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Figure 3. Bi-factor model with 12 binary items. Factor 1 is associated with six
items, x 1 through x6, while factor 2 is linked to item x7 through x12. Factor
1 and factor 2 are correlated. Factor 3 is associated with all 12 items, x1
through x12.
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loadings, respectively, while LC, MC, and HC represented
low, moderate, and high factor correlations (low: 0 to 0.3,
moderate: 0.3 to 0.6, high: 0.6 to 0.9). As shown in the fig-
ure, the Bentler and Yuan smoothing algorithm demon-
strated particularly poor performance, failing to converge in
the majority of replications, whereas the other methods
maintained  substantially higher convergence rates.
Convergence for the Bentler and Yuan (BY) method
improved as factor loadings and correlations increased from
low to moderate levels. However, this trend reversed at
higher levels of loadings and correlations, where conver-
gence rates declined. In contrast, the other five algorithms
showed a consistent improvement in convergence rates
across the full range of loading and correlation conditions.

The second panel in Figure 4 presents results grouped by
sample size (i.e., 100, 200, 300, 500, and 1,000). This panel
illustrates how variations in sample size further differentiated
method performance. The Bentler and Yuan (BY) algorithm
exhibited declining convergence rates as the sample size
increased from small (n =100) to moderate levels (n =200 or
n=300), whereas the competing methods showed improved
performance. However, with larger samples (n=500 or
n=1,000), the Bentler and Yuan method demonstrated a
dramatic recovery (from M =10% to M > 80% convergence),
while the other methods experienced slight declines. Across
all conditions, the new approach and Higham’s nearest cor-
relation method (HI) proved to be the most reliable, consist-
ently maintaining high convergence rates. The worsening
convergence observed for some methods in specific models
may reflect increasing model instability or structural incom-
patibility with larger datasets.

3.2. Factor Loading Estimation

3.2.1. Two-Factor Model

Due to convergence issues with the Bentler and Yuan
method, we excluded it from further analysis. We evaluated
the five remaining smoothing methods by calculating their
mean estimation bias in a two-factor confirmatory model.
Figure 5 presents these mean differences with 95% confi-
dence intervals (+1.96 standard errors), displaying results

Convergence Rates Grouped by Sample Size
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Figure 4. Comparison of convergence rates for six methods in two-factor model. Panel 1: Comparison of convergence rates for six methods grouped by model
Type. Panel 2: Comparison of convergence rates for 6 methods grouped by sample size. The figure demonstrates convergence rates for Bentler and Yuan (2011)
(by), Higham (2002) (HI), Bock et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and the new approach (new).
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Comparison of Five Smoothing Methods on Loading Estimation: Mean Bias within 1.96 Standard Errors
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Figure 5. Comparison of loading estimation for five methods in two-factor model: Mean bias within 1.96 standard errors. The figure demonstrates loading esti-
mates for Higham (2002) (HI), Bock et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and the new approach (new).

across all methods, sample sizes, and three levels of loading
conditions (low: 0 to 0.3, moderate: 0.3 to 0.6, and high: 0.6
to 0.9) and latent variable correlations. This presentation
provides a comprehensive assessment of parameter recovery
accuracy.

Analyses of the moderate and high loading conditions
revealed systematic performance differences across methods.
Higham’s method (HI) and Schaeffer’s method (Sch) con-
sistently produced the highest estimates, followed by the
proposed new method, whereas Bock et al.’s (Bock) method
and the Knol and Berger (KB) method yielded the lowest
estimates. At the smallest sample size (N=100), all methods
exhibited downward bias, although the estimates from HI
and Sch were closest to the true values. This pattern shifted
with increasing sample size: the new method demonstrated
optimal accuracy at moderate sample sizes (N=200 or
N=300), while the Bock and KB methods performed best
at larger sample sizes (N=500 or N=1,000). Two notable
trends emerged across these conditions: (a) estimation
accuracy improved with increasing sample size under mod-
erate loadings at all correlation levels, and (b) variance
decreased monotonically as loading conditions progressed
from low to high. The performance hierarchy (HI/
Sch > new method > Bock/KB) remained remarkably stable
across all variations.

Under low loading conditions, we observed a counterin-
tuitive phenomenon in which variance increased with larger

sample sizes, contradicting standard statistical expectations.
Although all methods exhibited variable performance across
conditions, Higham’s method (HI) demonstrated superior
stability and accuracy in most cases. The proposed new
method consistently ranked second in performance, fol-
lowed closely by the Knol and Berger (KB) method in terms
of estimation accuracy.

3.3. Factor Correlation Estimation

3.3.1. Two-factor Model

Figure 6 illustrates the mean differences between estimated
and true correlations, along with 95% confidence intervals
(£1.96 standard errors), comparing results across five
smoothing methods, varying sample sizes, three levels of
loading conditions, and three levels of latent variable corre-
lations. Variance consistently decreased as loading condi-
tions progressed from low to high across all correlation
levels, regardless of sample size or estimation method. The
effects of sample size varied by loading condition: variance
systematically decreased as sample size increased under
moderate and high loadings, but remained relatively stable
under low-loading conditions.

Regarding method performance, the proposed new
method produced systematically higher estimates than both
Higham’s method (HI) and Schaeffer’s method (Sch) under
high-loading conditions, although all three approaches
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Comparison of Five Smoothing Methods on Correlation Estimation: Mean Bias within 1.96 Standard Errors
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Figure 6. Comparison of correlation estimation for five methods in two-factor model: Mean bias within 1.96 standard errors. The figure demonstrates correlation
estimates for Higham (2002) (HI), Bock et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and the new approach (new).

Table 2. Two-factor model fit of moderate loading and moderate correlation
with criteria: Robust CFl > 0.95, Robust RMSEA < 0.05, and P-value < 0.05.
The table demonstrates the fit assessment for the Higham (2002) (HI), Bock
et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and
the new approach (new) over 1000 replications. It included the expected
value and proportions of robust CFA, robust RMSEA, and P-value. The simula-
tion condition here was . = uniform(0.3,0.6) and p = uniform(0.3,0.6).

Sample Size HI Bock KB Sch New
Robust RMSEA (%) 100 0.23 1.87 1.87 0.23 0.23
Robust CFI (%) 0.68 0.93 0.94 0.56 0.34
Type | error (%) 75.6 46.8 46.7 76.4 729
Robust RMSEA (%) 200 1.12 4.31 421 1.12 2.35
Robust CFI (%) 0.34 0.41 0.53 0.41 0.61
Type | error (%) 92.8 69.1 69.1 93.1 88.0
Robust RMSEA (%) 300 394 1085 1085 3.83 6.48
Robust CFI (%) 0.61 0.40 0.31 0.50 0.61
Type | error (%) 96.6 86.6 86.6 96.8 93.9
Robust RMSEA (%) 500 1595 33.81 3392 16.04 2219
Robust CFI (%) 0.20 0.10 0.10 0.20 0.20
Type | error (%) 97.1 95.7 95.7 97.2 96.8
Robust RMSEA (%) 1000 73.06 7949 7951 7349 7446
Robust CFI (%) 3.57 3.18 3.18 3.99 3.78
Type | error (%) 94.2 93.8 93.9 93.7 94.2

yielded larger estimates than either the Bock or Knol and
Berger (KB) methods. Despite exhibiting upward bias in
these conditions, the Bock and KB methods provided the
most accurate parameter estimates. In contrast, low-loading
conditions produced consistent downward bias across all
methods. For moderate loadings, performance varied by cor-
relation level: the Bock and KB methods excelled at low cor-
relations, the new approach outperformed others at

moderate correlations in almost all scenarios, and at high
correlations, the new method generally dominated, except at
a sample size of N=200, where HI and Sch performed
slightly better.

3.4. Fit Assessment

3.4.1. Two-Factor Model

Because the models exhibited similar performance in terms
of model fit, we combined the results for the condition with
moderate loadings and moderate correlations in Table 2, as
this scenario may be the most common in real-world appli-
cations. As shown in Table 2, none of the five methods
demonstrated a particularly strong fit for the two-factor
model. Among the methods, the Bock and Knol and Berger
(KB) approaches, both belonging to the eigenvalue-based
family, performed similarly and produced the best fit statis-
tics compared to the others. These two methods consistently
yielded the highest number of cases in which Robust CFI
and RMSEA met the fit criteria, while exhibiting fewer cases
with a p-value smaller than 0.05, despite noticeable inflation
in Type I error rates. In contrast, Higham’s (HI) and
Schaeffer’s (Sch) methods also behaved similarly but pro-
duced the poorest model fit indices, with the weakest per-
formance on Robust CFI, RMSEA, and Type I error rates.
The new method fell between the two groups, performing
moderately across all metrics without clear superiority or
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Table 3. Pros and cons for each smoothing algorithm.

Algorithm Recommend (+) Not Recommend (—)

Bock et al. (1988)

Structural Detection/Model
Fit
Correlation Estimations

Knol and Berger Structural Detection/Model
(1991) Fit

Correlation Estimations

Loading Estimation

Loading Estimation

Higham (2002) Loading Estimation Structural Detection/
High convergency rate Model Fit
Correlation
Estimations

Correlation Estimations
Structural Detection/
Model Fit

Loading Estimation

Bentler and Yuan
(2011)

Loading Estimations
Convergency Issues

Schaeffer (2014) Structural Detection/

Model Fit

Correlation

Estimations
Proposed New Small Sample Size No apparent
Approach (inspired High convergency rate drawback

by Lorenzo-Seva
and Ferrando)

inferiority. These results underscore notable differences
among the methods, with the Bock and KB approaches
demonstrating relatively better performance in meeting
model fit criteria despite certain limitations.

As sample size increased, the performance of Robust
RMSEA improved, with a greater number of cases meeting
the criterion of Robust RMSEA < 0.05 across all five meth-
ods. In contrast, Robust CFI values and Type I error rates
deteriorated as sample size increased, particularly up to
N=500. However, slight improvements in these indices
were observed when the sample size reached N=1,000. At
larger sample sizes, the smoothing approaches appeared to
distort additional information from the matrix, leading to
an overall decline in model fit indices’ performance.

4, Conclusion

This study evaluated methods for smoothing non-positive
definite correlation matrices through theoretical analysis and
Monte Carlo simulations. We compared approaches pro-
posed by Bock et al. (1988), Knol and Berger (1991),
Higham (2002), Bentler and Yuan (2011), Schaeffer (2014),
and a proposed new method, identifying the optimal condi-
tions for each. Table 3 summarizes key model and estima-
tion features for which the different smoothing
methodologies are recommended or not recommended.

The Bentler and Yuan method encounters convergence
difficulties due to its non-constructive treatment of matrix
D. While Theorem 1 proves D’s existence, it provides no
explicit construction method, relying instead on heuristic
determination of an arbitrary constant k. This results in
multiple potential algorithm variants with differing out-
comes. Preliminary evidence suggests CSDP (a semidefinite
programming approach similar to Higham’s method) could
construct D, though additional research is needed to verify
this approach.

Two eigenvalue-based methods (Bock et al., 1988; Knol
& Berger, 1991) showed superior model fit and correlation
estimation while preserving proportional relationships

among correlations. In contrast, Higham’s Higham (2002)
and Schaeffer’s Schaeffer (2014) methods demonstrated
stronger loading estimation capabilities, revealing a meth-
odological trade-off between structural detection and factor
loading accuracy. Notably, correlation estimation ability
covaried with model fit, suggesting shared psychometric
properties. The Bentler and Yuan (2011) method, despite
convergence challenges, achieved excellent results post-
convergence by selectively modifying only problematic cor-
relations while preserving others.

The newly proposed method in this study successfully
integrates these complementary strengths while addressing
their respective limitations. It maintains high convergence
rates comparable to Higham’s method while achieving bal-
anced performance across model fit, correlation estimation,
and loading accuracy.

5. Limitations and Future Direction

Robust corrections within structural equation modeling
(SEM) rely on the weight matrix of asymptotic covariances
of the model, I'. In this simulation study, we observed that
the smoothing algorithm alters the original polychoric cor-
relation matrix, from which the weight matrix is derived. As
a result, the weight matrix no longer corresponds to the
model-implied covariance matrix, which may explain the
observed poor fit performance. Future research should
investigate how the smoothing algorithm affects the weight
matrix and its implications for model fit.

Furthermore, the impact of these methods on standard
error estimation remains unknown. The Bentler and Yuan
method warrants further investigation, especially regarding
its treatment of matrix D. Understanding these aspects
could provide valuable insights into improving the robust-
ness and applicability of these methods.
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