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ABSTRACT 
Confirmatory factor analysis (CFA) using polychoric correlations has become standard in psychometric 
and item analyses. Nevertheless, sparse data can lead to non-positive definite (NPD) polychoric correl
ation matrices, posing notable challenges. Smoothing algorithms to address this issue can play an 
important role in eliminating noise and enhancing signal quality. In the present article, simulation 
studies were conducted to compare the eigenvalue-based smoothing methods, semidefinite dual 
approaches, and Sylvester’s criterion smoothing methods. They all aim to transform NPD matrices into 
positive definite ones, but differ in technique. To address the limitations of these methods, a new 
smoothing algorithm is proposed at the end.
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1. Introduction

In Structural Equation Modeling (SEM) and Confirmatory 
Factor Analysis (CFA), relationships between latent constructs 
and observed indicators are typically modeled using correl
ation or covariance matrices (Kline, 2023). While Pearson cor
relations are suitable for continuous data, they can 
underestimate associations in ordinal data due to the unequal 
spacing between categories (Olsson, 1979; Robitzsch, 2020). 
Polychoric correlations address this limitation by assuming an 
underlying bivariate normal distribution (Robitzsch, 2020), 
making them the standard choice for analyzing ordinal data in 
psychometrics (Mueller & Hancock, 2015). However, estimat
ing polychoric correlations can be computationally demand
ing, as it involves multidimensional integrals. A computational 
workaround implies estimating each correlation for pairs of 
variables, but the process often yields non-positive definite 
(NPD) matrices (i.e., matrices with one or more negative 
eigenvalues), especially when data are sparse, which can com
plicate model estimation (Ekstr€om, 2011).

Smoothing algorithms have emerged as essential tools for 
converting NPD polychoric matrices into positive definite 
forms. The application and evaluation of smoothing algo
rithms in Exploratory Factor Analysis (EFA) and Principal 
Component Analysis (PCA) have been extensively studied 
over the past few decades. Hayashi and Marcoulides (2006) 
offer an in-depth overview of this issue in the context of 
exploratory factor analysis, with a more recent discussion by 
Marôco (2024).

Debelak and Tran (2013) conducted one of the founda
tional studies on the accuracy of parallel analysis when 

applied to potentially non-positive definite (NPD) tetrachoric 
correlation matrices. Their work focused on dimensionality 
recovery using three distinct smoothing methods: (a) 
the Higham alternating-projections algorithm (Higham, 
2002), (b) the Bentler and Yuan algorithm (Bentler & Yuan, 
2011), and (c) the Knol and Berger algorithm (Knol & 
Berger, 1991). Their study highlighted the importance of 
smoothing for improving dimensionality assessment in tet
rachoric correlation matrices. In a subsequent study, Debelak 
and Tran (2016) extended their analysis to polychoric correl
ation matrices, evaluating dimensionality recovery across a 
broader range of major common factors. Building on this 
work, Kracht and Waller (2022) replicated these assessments 
of dimensionality in one- and two-dimensional common fac
tor models, emphasizing the importance of ensuring that 
matrices are PD before analyzing them.

Lorenzo-Seva and Ferrando (2020) investigated the 
causes, consequences, and potential solutions for non- 
positive definite (NPD) polychoric correlation matrices in 
Exploratory Item Factor Analysis. They evaluated five 
smoothing methods: (a) least-squares smoothing (Knol & 
ten Berge, 1989), (b) linear smoothing via a ridge penalty 
(J€oreskog & S€orbom, 1981), (c) non-linear smoothing 
(Devlin et al., 1975, 1981), (d) the Bentler–Yuan algorithm 
(Bentler & Yuan, 2011), and (e) a novel “sweet smoothing” 
algorithm proposed by Lorenzo–Seva and Ferrando them
selves. Their study included simulations comparing the per
formance of the Bentler–Yuan and sweet smoothing 
algorithms, highlighting the relative merits of each.

Further contributions were made by Nilforooshan (2020), 
who examined three additional methods: (a) an iterative 
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weighting procedure (Jorjani et al., 2003), (b) the unweighted 
bending procedure (Schaeffer, 2014), and (c) a method pro
posed by Bock et al. (1988). Nilforooshan evaluated the differ
ences between pre- and post-smoothing results across 
covariance matrices, correlation matrices, and ill-conditioned 
matrices. This study broadened understanding of the practical 
effects of smoothing, clarified when such approaches are neces
sary, and compared the relative advantages of each method.

Despite advances in exploratory contexts, research on 
smoothing algorithms for confirmatory factor analysis 
remains underdeveloped. The present study addresses this 
critical gap through systematic simulations evaluating (a) 
convergence rates, (b) parameter estimation accuracy, and 
(c) model fit indices in CFA applications. To help resolve 
the pervasive issue of non-positive definite (NPD) matrices, 
we propose a novel smoothing procedure inspired by 
Lorenzo-Seva and Ferrando (2020).

1.1. Matrix Smoothing Algorithms

In this article, we compared six approaches proposed by 
Bock et al. (1988), Knol and Berger (1991), Schaeffer (2014), 
Higham (2002), and Bentler and Yuan (2011) (see Table 1). 
Table 1 presents an overview of these methods, organized 
by author(s), methodological type, algorithmic details, and R 
packages. Based on the underlying principles, the methods 
are categorized as eigenvalue-based, semidefinite dual, or 
Sylvester’s criterion approaches. Our novel method (inspired 
by Lorenzo-Seva & Ferrando, 2020) relies on Sylvester’s cri
terion of PD and is categorized as such. This novel smooth
ing method conducts a careful iterative process of Higham’s 
nearest correlation approach across the principal minors. It 
ensures that the correlation matrix remains as close as pos
sible to being positive definite while extracting the appropri
ate part of the matrix at each step (see details in Table 1 of 
the last row). We also included this approach in simulation 
scenarios for evaluation to assess whether it could achieve 
our intended goals.

2. Methodology

A Monte Carlo simulation was implemented to compare the 
six smoothing approaches, including our new approach, 
using the R packages and functions presented in Table 1. 
CFA was conducted on the smoothed correlation matrix 
using the six approaches described above.

2.1. Data Generation

We generated simulated datasets in lavaan (Rosseel, 2012) 
by implementing three factor structures: (a) a correlated 
two-factor model with six binary indicators per factor 
(Figure 1), (b) a one-factor model representing core applica
tions of item response theory (IRT; Figure 2; Wirth & 
Edwards, 2007), and (c) a bifactor model in which two spe
cific factors were each measured by six binary indicators, 
while a general factor was measured by all twelve indicators. 
We allowed the specific factors to correlate with each other 

but specified them as orthogonal to the general factor 
(Figure 3). This design facilitated the evaluation of smooth
ing algorithm performance across commonly employed but 
structurally distinct SEM configurations.

To systematically evaluate method performance, we 
employed a fully crossed 3� 3 factorial design with 1,000 
replications per condition (R¼ 1000). Factor loadings and 
latent correlations were uniformly sampled across three 
ranges: low (0 to 0.3), medium (0.3 to 0.6), and high (0.6 to 
0.9), ensuring a comprehensive assessment of parameter 
recovery under varying population conditions. Albeit 
uncommon, this simulation method mimics the logic behind 
the design of experiments with a random factor to ensure 
conclusions generalize across the range of potential param
eter estimates (Li & Zumbo, 2009; Shear & Zumbo, 2013).

Data sparseness is a known contributor to estimation 
imprecision and the generation of non-positive definite cor
relation matrices. We controlled the degree of sparseness 
through threshold manipulation. Specifically, we simulated 
binary responses by alternating thresholds of 1.25 and −1.75 
across items (e.g., item 1 had a threshold of 1.25, item 2 
had a threshold of −1.75, item 3 had a threshold of 1.25, 
and so forth). This intentional use of extreme thresholds 
induced sparseness, thereby increasing the likelihood of 
non-positive definiteness. Five sample sizes (n) levels were 
examined: 100, 200, 300, 500, 1000 cases (see Li, 2016a, 
2016b for a similar design).

After generating the data, we conducted a series of ana
lytic steps to evaluate model performance. First, we per
formed confirmatory factor analysis (CFA) using the true 
population covariance matrix to derive the asymptotic 
matrix (C) for standard error computation. Next, we calcu
lated the polychoric correlation matrix from the simulated 
data and applied five distinct smoothing methods to address 
potential non-positive definiteness. Finally, we fitted the cor
rect factor model to each smoothed matrix to assess conver
gence rates, parameter recovery, and overall model fit.

2.2. Simulation Outcomes

2.2.1. Convergence
Since small samples are known to induce issues of model 
non-convergence in SEM, the proportion (M) of non- 
convergent models was recorded.

2.2.2. Bias
The raw bias of each simulation condition, BðhcÞ was calcu
lated as: 

B hcð Þ ¼ ðRNÞ−1
RR

r¼1R
N
i¼1ðĥcri − hcriÞ, (1) 

where ĥcri is the ith parameter estimate for replication r in 
condition c; hcri is the corresponding true population par
ameter. Here, R ¼ 1000 denotes the total number of replica
tions, and N represents the total number of estimated 
parameters. This formula computes the average difference 
between estimated and true parameter values across all 
parameters and replications. We systematically compared 
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the magnitude of these bias estimates across all simulation 
conditions and smoothing methods for both (a) factor load
ing estimates and (b) latent factor correlations.

2.2.3. Type I error rate
Since the correct model is being fitted to the data, the 
p-value associated with the v2 test of fit will be used to 
evaluate the empirical Type I error rate. This is measured as 

the proportion of p-values less than .05 across R 
replications.

2.2.4. Approximate model fit
Robust Comparative Fit Index (CFI) and Robust Root Mean 
Square Error of Approximation (RMSEA) are approximate 
fit indices less sensitive to sample size. The CFI compares 
the specified model with a baseline model, assuming no 
relationships among the variables. Values closer to 1 indi
cate a better fit, with a threshold of 0.95 or above generally 
indicating a good model fit (Hu & Bentler, 1999). Values of 
RMSEA less than 0.05 indicate a close fit (Browne & 

Table 1. Matrix of smoothing algorithms.

Author(s) Type Algorithm R function

Bock et al. (1988) Eigenvalue-based Step 1: Perform eigen-decomposition of the matrix: A ¼ QKQ−1; where Q is the 
matrix of eigenvectors and K is the diagonal matrix of eigenvalues. 

Step 2: Replace each eigenvalue ki smaller than a threshold c with 100c (where c is 
a small constant). 

Step 3: Rescale the sum of the positive eigenvalues to match the number of items, 
producing diagonal matrix K0:

Step 4: Compute the new matrix using the updated eigenvalues: A
0

¼ QK0Q−1:

Step 5: Rescale the resulting matrix to a correlation matrix using cov2cor.

cor.smooth(), ‘psych’ 
package (Revelle, 
version 2.3.12)

Knol and Berger 
(1991)

Step 1: Perform eigen-decomposition of the matrix: A ¼ QKQ−1:
Step 2: Construct new eigenvalue matrix: K

0

¼ diagðmaxðki , 0ÞÞ
Step 3: Compute the new matrix using the updated eigenvalues: A

0

¼ QK0Q−1:

Step 4: Rescale the resulting matrix to a correlation matrix using cov2cor.

smoothKB(), ‘fungible’ 
package (Waller et al., 
2023, version 2.4.4)

Schaeffer (2014) Step 1: Perform eigen-decomposition of the matrix: A ¼ QKQ−1:
Step 2: For each negative eigenvalue ki , compute a small positive value using the 

formula: q s − kið Þ
2
=ð100s2 þ 1Þ, where:

a. q is the smallest positive eigenvalue, 
b. s ¼ 2

Pm
i¼1 ki is twice the sum of all negative eigenvalues, 

c. m is the number of negative eigenvalues.
Step 3: Replace negative ki with small positive values from step 2 in descending 

order.

bend(),’mbend’ 
(Nilforooshan, 
version 1.3.1)

Higham (2002) semidefinite dual Step 1: Project the matrix A onto the set of symmetric positive semidefinite 
matrices S: W−18W−1ð Þ ¼ diag A-Ið Þ;

Step 2: Project A onto the set of matrices with unit diagonals U: 
Ps Að Þ ¼ W−1=2ððW1=2AW1=2ÞþÞW

−1=2 

where ð�Þþ retains the positive semidefinite part of the matrix. 
Step 3: Use the Frobenius norm to measure the closeness between smoothed a) 

and non-smoothed, b) matrices (Havel, 2002; Golub & Van Loan, 2013): 
jjA-Bjj2F ¼

P
i

P
j ðaij − bijÞ

2

nearcorr(), ‘sfsmisc’ 
package (Maechler, 
2024,Version 1.1-19)

Bentler and Yuan 
(2011)

Sylvester’s criterion Step 1: Extract all potential factors from the common factor space and identify 
variables with communalities >1. 

Step 2: Reduce specific correlation estimates by a context-sensitive factor k:
Step 3: Progressively decrease 0:0010

N1=2

� �
; until:

a. The matrix becomes positive definite, or 
b. k � 0

smoothBY(), ‘fungible’ 
package (Waller et al., 
2023, version 2.4.4)

Proposed new 
approach 
(inspired by 
Lorenzo-Seva & 
Ferrando)

Step 1: Set the number of factors to extract r ¼ 1:
Step 2: Extract r-factors from A; and check for non-positive NPD. 
Step 3: If no NPD is observed, increase r by 1 and repeat step 2. Otherwise:

a. Extract the first r�r submatrix from A:
b. Apply Higham’s nearest correlation smoothing to this submatrix. 
c. Replace the r�r  block in A with the smoothed submatrix to create A

0

:

Step 4: Increase r by 1 and repeat steps 2-3 until the entire matrix is reconstructed 
and smoothed.

Figure 1. Two-factor model with 12 binary items. Factor 1 is associated with 6 
items, �1 through �6, while factor 2 is linked to items, �7 through �12. 
Factor 1 and factor 2 are correlated.

Figure 2. One-factor model with 12 binary items. Factor 1 is associated with all 
12 items, �1 through �12.
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Cudeck, 1992). Since the correct model is being fitted to the 
data, we would expect CFI ¼ 1.0 and RMSEA ¼ 0.0. We 
will monitor the proportion of CFI and RMSEA values dif
ferent from these values.

3. Results

Because the results and trends were similar across the three 
models, we selected the two-factor model as a representative 
example to describe in detail. Results for the other two 
models are provided in the supplementary material. For the 
two-factor model, we present the results of the Monte Carlo 
study as follows. First, we report the average bias for factor 
loadings and latent factor correlations, along with their 95% 
confidence intervals. Second, we summarize the Type I error 
rates, RMSEA, and CFI values according to the different 
simulation conditions.

3.1. Convergence

The simulation results revealed differences in convergence 
rates across methods (see Figure 4). In the first panel of this 
figure, results were grouped by model type. Specifically, LL, 
ML, and HL referred to low, moderate, and high factor 

loadings, respectively, while LC, MC, and HC represented 
low, moderate, and high factor correlations (low: 0 to 0.3, 
moderate: 0.3 to 0.6, high: 0.6 to 0.9). As shown in the fig
ure, the Bentler and Yuan smoothing algorithm demon
strated particularly poor performance, failing to converge in 
the majority of replications, whereas the other methods 
maintained substantially higher convergence rates. 
Convergence for the Bentler and Yuan (BY) method 
improved as factor loadings and correlations increased from 
low to moderate levels. However, this trend reversed at 
higher levels of loadings and correlations, where conver
gence rates declined. In contrast, the other five algorithms 
showed a consistent improvement in convergence rates 
across the full range of loading and correlation conditions.

The second panel in Figure 4 presents results grouped by 
sample size (i.e., 100, 200, 300, 500, and 1,000). This panel 
illustrates how variations in sample size further differentiated 
method performance. The Bentler and Yuan (BY) algorithm 
exhibited declining convergence rates as the sample size 
increased from small (n¼ 100) to moderate levels (n¼ 200 or 
n¼ 300), whereas the competing methods showed improved 
performance. However, with larger samples (n¼ 500 or 
n¼ 1,000), the Bentler and Yuan method demonstrated a 
dramatic recovery (from M¼ 10% to M> 80% convergence), 
while the other methods experienced slight declines. Across 
all conditions, the new approach and Higham’s nearest cor
relation method (HI) proved to be the most reliable, consist
ently maintaining high convergence rates. The worsening 
convergence observed for some methods in specific models 
may reflect increasing model instability or structural incom
patibility with larger datasets.

3.2. Factor Loading Estimation

3.2.1. Two-Factor Model
Due to convergence issues with the Bentler and Yuan 
method, we excluded it from further analysis. We evaluated 
the five remaining smoothing methods by calculating their 
mean estimation bias in a two-factor confirmatory model. 
Figure 5 presents these mean differences with 95% confi
dence intervals (±1.96 standard errors), displaying results 

Figure 3. Bi-factor model with 12 binary items. Factor 1 is associated with six 
items, �1 through �6, while factor 2 is linked to item �7 through �12. Factor 
1 and factor 2 are correlated. Factor 3 is associated with all 12 items, �1 
through �12.

Figure 4. Comparison of convergence rates for six methods in two-factor model. Panel 1: Comparison of convergence rates for six methods grouped by model 
Type. Panel 2: Comparison of convergence rates for 6 methods grouped by sample size. The figure demonstrates convergence rates for Bentler and Yuan (2011) 
(by), Higham (2002) (HI), Bock et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and the new approach (new).
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across all methods, sample sizes, and three levels of loading 
conditions (low: 0 to 0.3, moderate: 0.3 to 0.6, and high: 0.6 
to 0.9) and latent variable correlations. This presentation 
provides a comprehensive assessment of parameter recovery 
accuracy.

Analyses of the moderate and high loading conditions 
revealed systematic performance differences across methods. 
Higham’s method (HI) and Schaeffer’s method (Sch) con
sistently produced the highest estimates, followed by the 
proposed new method, whereas Bock et al.’s (Bock) method 
and the Knol and Berger (KB) method yielded the lowest 
estimates. At the smallest sample size (N¼ 100), all methods 
exhibited downward bias, although the estimates from HI 
and Sch were closest to the true values. This pattern shifted 
with increasing sample size: the new method demonstrated 
optimal accuracy at moderate sample sizes (N¼ 200 or 
N¼ 300), while the Bock and KB methods performed best 
at larger sample sizes (N¼ 500 or N¼ 1,000). Two notable 
trends emerged across these conditions: (a) estimation 
accuracy improved with increasing sample size under mod
erate loadings at all correlation levels, and (b) variance 
decreased monotonically as loading conditions progressed 
from low to high. The performance hierarchy (HI/ 
Sch> new method>Bock/KB) remained remarkably stable 
across all variations.

Under low loading conditions, we observed a counterin
tuitive phenomenon in which variance increased with larger 

sample sizes, contradicting standard statistical expectations. 
Although all methods exhibited variable performance across 
conditions, Higham’s method (HI) demonstrated superior 
stability and accuracy in most cases. The proposed new 
method consistently ranked second in performance, fol
lowed closely by the Knol and Berger (KB) method in terms 
of estimation accuracy.

3.3. Factor Correlation Estimation

3.3.1. Two-factor Model
Figure 6 illustrates the mean differences between estimated 
and true correlations, along with 95% confidence intervals 
(±1.96 standard errors), comparing results across five 
smoothing methods, varying sample sizes, three levels of 
loading conditions, and three levels of latent variable corre
lations. Variance consistently decreased as loading condi
tions progressed from low to high across all correlation 
levels, regardless of sample size or estimation method. The 
effects of sample size varied by loading condition: variance 
systematically decreased as sample size increased under 
moderate and high loadings, but remained relatively stable 
under low-loading conditions.

Regarding method performance, the proposed new 
method produced systematically higher estimates than both 
Higham’s method (HI) and Schaeffer’s method (Sch) under 
high-loading conditions, although all three approaches 

Figure 5. Comparison of loading estimation for five methods in two-factor model: Mean bias within 1.96 standard errors. The figure demonstrates loading esti
mates for Higham (2002) (HI), Bock et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and the new approach (new).
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yielded larger estimates than either the Bock or Knol and 
Berger (KB) methods. Despite exhibiting upward bias in 
these conditions, the Bock and KB methods provided the 
most accurate parameter estimates. In contrast, low-loading 
conditions produced consistent downward bias across all 
methods. For moderate loadings, performance varied by cor
relation level: the Bock and KB methods excelled at low cor
relations, the new approach outperformed others at 

moderate correlations in almost all scenarios, and at high 
correlations, the new method generally dominated, except at 
a sample size of N¼ 200, where HI and Sch performed 
slightly better.

3.4. Fit Assessment

3.4.1. Two-Factor Model
Because the models exhibited similar performance in terms 
of model fit, we combined the results for the condition with 
moderate loadings and moderate correlations in Table 2, as 
this scenario may be the most common in real-world appli
cations. As shown in Table 2, none of the five methods 
demonstrated a particularly strong fit for the two-factor 
model. Among the methods, the Bock and Knol and Berger 
(KB) approaches, both belonging to the eigenvalue-based 
family, performed similarly and produced the best fit statis
tics compared to the others. These two methods consistently 
yielded the highest number of cases in which Robust CFI 
and RMSEA met the fit criteria, while exhibiting fewer cases 
with a p-value smaller than 0.05, despite noticeable inflation 
in Type I error rates. In contrast, Higham’s (HI) and 
Schaeffer’s (Sch) methods also behaved similarly but pro
duced the poorest model fit indices, with the weakest per
formance on Robust CFI, RMSEA, and Type I error rates. 
The new method fell between the two groups, performing 
moderately across all metrics without clear superiority or 

Figure 6. Comparison of correlation estimation for five methods in two-factor model: Mean bias within 1.96 standard errors. The figure demonstrates correlation 
estimates for Higham (2002) (HI), Bock et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and the new approach (new).

Table 2. Two-factor model fit of moderate loading and moderate correlation 
with criteria: Robust CFI > 0.95, Robust RMSEA < 0.05, and P-value < 0.05. 
The table demonstrates the fit assessment for the Higham (2002) (HI), Bock 
et al. (1988) (Bock), Knol and Berger (1991) (KB), Schaeffer (2014) (sch), and 
the new approach (new) over 1000 replications. It included the expected 
value and proportions of robust CFA, robust RMSEA, and P-value. The simula
tion condition here was k ¼ uniformð0:3, 0:6Þ and q ¼ uniformð0:3, 0:6Þ:

Sample Size HI Bock KB Sch New

Robust RMSEA (%) 100 0.23 1.87 1.87 0.23 0.23
Robust CFI (%) 0.68 0.93 0.94 0.56 0.34
Type I error (%) 75.6 46.8 46.7 76.4 72.9
Robust RMSEA (%) 200 1.12 4.31 4.21 1.12 2.35
Robust CFI (%) 0.34 0.41 0.53 0.41 0.61
Type I error (%) 92.8 69.1 69.1 93.1 88.0
Robust RMSEA (%) 300 3.94 10.85 10.85 3.83 6.48
Robust CFI (%) 0.61 0.40 0.31 0.50 0.61
Type I error (%) 96.6 86.6 86.6 96.8 93.9
Robust RMSEA (%) 500 15.95 33.81 33.92 16.04 22.19
Robust CFI (%) 0.20 0.10 0.10 0.20 0.20
Type I error (%) 97.1 95.7 95.7 97.2 96.8
Robust RMSEA (%) 1000 73.06 79.49 79.51 73.49 74.46
Robust CFI (%) 3.57 3.18 3.18 3.99 3.78
Type I error (%) 94.2 93.8 93.9 93.7 94.2
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inferiority. These results underscore notable differences 
among the methods, with the Bock and KB approaches 
demonstrating relatively better performance in meeting 
model fit criteria despite certain limitations.

As sample size increased, the performance of Robust 
RMSEA improved, with a greater number of cases meeting 
the criterion of Robust RMSEA < 0.05 across all five meth
ods. In contrast, Robust CFI values and Type I error rates 
deteriorated as sample size increased, particularly up to 
N¼ 500. However, slight improvements in these indices 
were observed when the sample size reached N¼ 1,000. At 
larger sample sizes, the smoothing approaches appeared to 
distort additional information from the matrix, leading to 
an overall decline in model fit indices’ performance.

4. Conclusion

This study evaluated methods for smoothing non-positive 
definite correlation matrices through theoretical analysis and 
Monte Carlo simulations. We compared approaches pro
posed by Bock et al. (1988), Knol and Berger (1991), 
Higham (2002), Bentler and Yuan (2011), Schaeffer (2014), 
and a proposed new method, identifying the optimal condi
tions for each. Table 3 summarizes key model and estima
tion features for which the different smoothing 
methodologies are recommended or not recommended.

The Bentler and Yuan method encounters convergence 
difficulties due to its non-constructive treatment of matrix 
D. While Theorem 1 proves D’s existence, it provides no 
explicit construction method, relying instead on heuristic 
determination of an arbitrary constant k. This results in 
multiple potential algorithm variants with differing out
comes. Preliminary evidence suggests CSDP (a semidefinite 
programming approach similar to Higham’s method) could 
construct D, though additional research is needed to verify 
this approach.

Two eigenvalue-based methods (Bock et al., 1988; Knol 
& Berger, 1991) showed superior model fit and correlation 
estimation while preserving proportional relationships 

among correlations. In contrast, Higham’s Higham (2002) 
and Schaeffer’s Schaeffer (2014) methods demonstrated 
stronger loading estimation capabilities, revealing a meth
odological trade-off between structural detection and factor 
loading accuracy. Notably, correlation estimation ability 
covaried with model fit, suggesting shared psychometric 
properties. The Bentler and Yuan (2011) method, despite 
convergence challenges, achieved excellent results post- 
convergence by selectively modifying only problematic cor
relations while preserving others.

The newly proposed method in this study successfully 
integrates these complementary strengths while addressing 
their respective limitations. It maintains high convergence 
rates comparable to Higham’s method while achieving bal
anced performance across model fit, correlation estimation, 
and loading accuracy.

5. Limitations and Future Direction

Robust corrections within structural equation modeling 
(SEM) rely on the weight matrix of asymptotic covariances 
of the model, C. In this simulation study, we observed that 
the smoothing algorithm alters the original polychoric cor
relation matrix, from which the weight matrix is derived. As 
a result, the weight matrix no longer corresponds to the 
model-implied covariance matrix, which may explain the 
observed poor fit performance. Future research should 
investigate how the smoothing algorithm affects the weight 
matrix and its implications for model fit.

Furthermore, the impact of these methods on standard 
error estimation remains unknown. The Bentler and Yuan 
method warrants further investigation, especially regarding 
its treatment of matrix D: Understanding these aspects 
could provide valuable insights into improving the robust
ness and applicability of these methods.
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