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ABSTRACT 
Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of 
positive and negative affect over time. An intuitive approach is to first estimate the measurement 
model of the latent variables, then compute factor scores, and finally use these factor scores as 
observed scores in vector autoregressive modeling. However, this approach neglects the uncertainty 
in the factor scores, leading to biased parameter estimates and threatening the validity of conclusions 
about the dynamic process. We propose Three-Step Latent Vector Autoregression that adheres to this 
stepwise procedure while correcting for the factor scores’ uncertainty. Stepwise approaches offer vari
ous advantages, for example the ability to visualize and inspect the factor scores. A simulation study 
demonstrates that the method performs well in obtaining correct parameter estimates of a dynamic 
process. We also provide an empirical example and scripts for implementation in the open-source soft
ware R using the lavaan package.
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1. Introduction

In recent years, psychologists have increasingly focused on 
the research of within-person processes by collecting and 
analyzing intensive longitudinal data (ILD) instead of cross- 
sectional data (Hamaker & Wichers, 2017). ILD are 
characterized by a large number of repeated measures per 
individual over a relatively short period, for instance, six 
measures each day for two weeks (Ariens et al., 2020). This 
allows researchers to obtain insights into the participants’ 
daily lives and study psychological processes, (e.g., how 
emotions carry over and interact with one another from one 
moment to the next; Kuppens & Verduyn, 2017).

To study such processes, researchers often use vector autore
gressive (VAR) modeling by regressing variables at one time- 
point on those at the previous time point (e.g., L€utkepohl, 
2005). These models assume that the variables are observed, but 
many constructs in psychological research (e.g., positive affect) 
are latent. This means that they are not directly observable and, 
instead, are measured indirectly through one or more items 
(e.g., positive affect can be assessed by asking to what extent a 
participant experiences a number of positive emotions, such as 
happiness and enthusiasm). The so-called measurement model 
(MM) describes which items measure which latent variable and 
to what extent (Millsap, 2011). It is commonly evaluated with 
item response theory (in case of categorical items; De Ayala, 
2022) or factor analysis (in case of continuous items; Lawley & 
Maxwell, 1962). In this article, we focus on factor analysis, 

where the so-called factors correspond to the latent variables. 
VAR models can be extended to accommodate latent variables 
by including an MM, resulting in latent vector autoregressive 
(LVAR) models.1 However, LVAR models are more intricate to 
estimate than regular VAR models, because the MM needs to 
be estimated in addition to the relations among the factors at 
subsequent time-points (the so-called structural model; SM).

One way to estimate LVAR models is using structural 
equation modeling (SEM), a one-step approach where the 
MM is estimated simultaneously with the SM. However, 
applied researchers frequently deviate from it and adopt a 
more intuitive, stepwise approach (Vogelsmeier et al., 2024): 
First, they solely estimate the MM using factor analysis 
while disregarding the SM. Then, the researchers compute 
factor scores for all individuals on all measurement occa
sions. The factor scores represent the positions on the 
underlying latent variables identified through the factor ana
lysis. Finally, the factor scores are used as observed scores in 
regular VAR models or Dynamic Structural Equation 
Modeling (DSEM; Asparouhov et al., 2018). However, this 
naïve stepwise estimation ignores the measurement error in 
the data and the resulting inherent uncertainty in the factor 
scores (Grice, 2001), leading to biased estimates of the SM 
(Devlieger et al., 2016; Devlieger & Rosseel, 2017).

To address this issue, several stepwise approaches to SEM 
that separate the estimation of the MM and the SM while 
accounting for measurement error have been developed in 
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recent years (for an overview, see Vermunt, 2024). Examples 
are factor score regression and path analysis (Devlieger 
et al., 2016; Devlieger & Rosseel, 2017), two-stage path ana
lysis (Lai & Hsiao, 2022), or the structural-after-measure
ment (SAM) approach to SEM (Rosseel & Loh, 2022). They 
have been shown to obtain unbiased estimates of regression 
parameters and to outperform one-step SEM in small sam
ple sizes (e.g., Kelcey, 2019; Savalei, 2019) as well as in the 
presence of misspecifications of the MM (Devlieger & 
Rosseel, 2017; Rosseel & Loh, 2022). However, these meth
ods have been developed for cross-sectional data and may 
not readily accommodate LVAR models. For instance, using 
standard factor analysis on the stacked data (i.e., on all 
time-points and persons simultaneously) treats the observa
tions across all persons as independent (i.e., the dependence 
of observations within a person is ignored). Moreover, VAR 
models are typically estimated via pairwise regression; that 
is, pairs of adjacent time-points are entered into the regres
sion equation. This assumes that the scores at a particular 
time-point are affected only by the scores from the previous 
time-point.

To tailor the stepwise estimation to LVAR models, we pre
sent and evaluate Three-Step Latent Vector Autoregression 
(3S-LVAR) that extends two-stage path analysis (Lai & 
Hsiao, 2022) to ILD. Specifically, in the first step, the MM 
of each latent variable is evaluated using factor analysis 
(Lawley & Maxwell, 1962). In the second step, the factor 
scores are computed. In the third step, the SM (i.e., a VAR 
model) is estimated by regressing the factor scores on those 
from the previous time-point while correcting for their 
inherent uncertainty. 3S-LVAR thus effectively combines 
the strengths of SEM (i.e., accounting for the measurement 
of latent variables) with the intuitiveness of a stepwise 
approach, which offers various advantages. The method is 
designed to closely adhere to the intuitive procedure often 
used in applied research, making it user-friendly and access
ible. The stepwise procedure allows researchers to scrutinize 
(and potentially adjust) the MM before estimating the 
parameters of the SM (Bakk et al., 2013; Lai et al., 2023; 
McNeish et al., 2021; Vermunt, 2010), and also increases 
robustness against local model misspecifications (Rosseel & 
Loh, 2022). Furthermore, the factor scores generated in the 
second step can be visualized and inspected for outliers 
(Hallgren et al., 2019) or trends and seasonality in the time 
series (L€utkepohl, 2005). Moreover, the factor scores can be 
reused in different analyses or by other researchers without 
needing to redo the measurement modeling. This distin
guishes 3S-LVAR from the related SAM approach, which 
employs a stepwise estimation but does not provide factor 
scores and requires specifying the MM and the SM simul
taneously. Lastly, while we focus on a simple LVAR model 
in the current article, the proposed stepwise estimation is 
highly flexible and can be extended to more complex mod
els (e.g., DSEM). Here, using factor scores while correcting 
for their uncertainty can facilitate model estimation by 
reducing the dimensionality of the model.

The current article aims to evaluate how well 3S-LVAR 
performs in obtaining accurate parameter estimates of an 

LVAR model. The paper is organized as follows: Section 2
describes 3S-LVAR in detail. Section 3 presents a simulation 
study investigating 3S-LVAR’s ability to obtain correct par
ameter and standard error (SE) estimates of a dynamic pro
cess under varying conditions. Section 4 illustrates 3S-LVAR 
with an application using the open-source software R (R 
Core Team, 2024). The final section discusses limitations 
and future directions for research.

2. Method

2.1. Data Structure

ILD pertain to repeated measures nested in individuals. 
Observed scores are indicated by yijt , where i¼ 1, … , I 
refers to the individuals, j¼ 1, … , J to the items (observed 
variables), and t¼ 1, … , T to the time-points. The number 
of time-points may differ across individuals (i.e., Ti), but the 
subscript i is omitted in the following for simplicity of nota
tion. The items measure q¼ 1, … Q factors (latent varia
bles). The responses of individual i at time-point t are 
captured in the J� 1 vector yit , which are gathered into the 
T� J matrix Yi per individual. We assume that the data are 
organized in the so-called long format, where each variable 
is represented in a single column, and each row represents 
one time-point per subject. For instance, a data set compris
ing seven variables measured 30 times for 20 individuals has 
600 rows and seven columns.

2.2. The Latent Vector Autoregressive Model

The specification of an LVAR model comprises two parts. 
First, the MM describes which items measure which factor 
and captures the strength of the relationship between the 
observed items and the underlying factor. Second, the SM 
describes to what extent the factors predict themselves and 
each other at consecutive measurement occasions. Figure 1
shows an example of an LVAR model with two latent fac
tors that are measured by three items each.2

The MM for a single observation is given by Lawley & 
Maxwell, (1962)

yit ¼ sþ Kgit þ eit , (1) 

where the J� 1 vector s represents the item intercepts and 
K indicates the J�Q matrix of factor loadings. The Q� 1 
vector git comprises the (true) latent variable scores3 of 
individual i at time-point t, and eit is a J� 1 vector of resid
uals, which are assumed to be independent of git:

2The model posits that the observations at time-point t only depend on those 
at the previous time-point t − 1. In other words, there is no direct effect of, 
for example, git−2 on git , and the association between these two observations 
is fully mediated through git−1: In this article, we focus on this so-called lag-1 
model as it is most commonly used in psychological research. The model can 
be extended by including more previous time-points as predictors.
3In the literature, these scores are sometimes also referred to as factor scores. 
To avoid confusion, we use the term “true scores” for the unobserved scores 
on the latent variable (i.e., git), and “factor scores” for the estimated factor 
scores as proxies for the true scores (i.e., ĝ it). See the following section for an 
explanation of how these estimated factor scores are obtained.
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The SM regresses the true scores at time-point t on those 
at the previous time-point:

git ¼ dþUgit−1 þ xit , (2) 

where git and git−1 refer to the Q� 1 vectors that contain 
the true scores of individual i at time-point t and t − 1, 
respectively. The Q� 1 vector d contains the intercepts (i.e., 
the predicted true scores if git−1 is 0). The Q�Q matrix U 

comprises the autoregressive (AR) parameters on the diag
onal and the crossregressive (CR) parameters on the off- 
diagonal.4 The AR parameters indicate to which extent the 
current value of a variable depends on its value at the previ
ous measurement occasion. For example, in emotion 
research the AR parameter has been conceptualized as emo
tional inertia (Kuppens & Verduyn, 2017). A value close to 
zero means that a person quickly returns to their baseline 
after deviating from it, while someone with a larger coeffi
cient will take longer (Hamaker, 2012; Jongerling et al., 
2015). In contrast, CR parameters indicate to what extent a 
variable predicts other variables at subsequent time-points. 

For instance, a negative CR parameter may indicate that a 
high positive affect value predicts a low negative affect value 
at the next measurement occasion.

The AR and CR parameters thus pertain to the part of 
the current observation that is carried over from (i.e., can 
be predicted by) the previous one. The part that cannot be 
predicted is referred to as the innovation. The innovations 
comprise all internal and external events that affect the indi
vidual’s process but were not part of the previous measure
ment (Hamaker, 2012). They are gathered in the Q� 1 
vector xit and assumed to be distributed as MVN 0, Ζð Þ, 
where Ζ indicates the innovation (co)variance matrix. Note 
that the innovations xit affect the true scores git and are 
thus carried over to the next observations through the AR 
and CR parameters. On the other hand, the measurement 
error eit affects the scores on the items and is thus not car
ried over. This is the single characteristic that distinguishes 
measurement error from innovations (Schuurman & 
Hamaker, 2019; Schuurman et al., 2015). For example, walk
ing in the rain on the way to work affects an individual’s 
overall mood, and the effect of this innovation persists at 
subsequent measurement occasions (with the strength of the 
carry-over being determined by the AR and CR parameters). 
In contrast, erroneously choosing value “6” over “5” on a 
mobile phone screen due to sunlight glare is error that will 
not propagate forward.

Figure 1. Visualizing a latent vector autoregressive model with two latent constructs and lag one. 
Note. The green arrows represent parameters of the measurement model. The blue arrows represent parameters of the structural model. Observed scores are 
denoted by y, latent (true) scores by g, residuals by e, and innovations by x

4Note that the model relies on two assumptions: First, the process is assumed 
to be stationary, which means that its means and (co)variances are constant 
across time (L€utkepohl, 2005). Second, the distance between all measurement 
occasions is assumed to be equal, for example one measurement every 
evening at 8pm.
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2.3. Estimating the Latent Vector Autoregressive Model 
in a Stepwise Manner

A popular approach among applied researchers is to first 
estimate the parameters of the MM, then compute factor 
scores as proxies of the true latent variable scores, and 
finally use the factor scores to estimate the SM. However, 
this approach has been shown to lead to biased regression 
parameters, because the (co)variances of the estimated factor 
scores (Rĝ) are not equal to the (co)variances of the latent 
variables (RgÞ (Devlieger et al., 2016; Devlieger & Rosseel, 
2017). The reason for this is that there is an inherent uncer
tainty in the factor score estimates, which arises from meas
urement error in the observed variables (Devlieger et al., 
2016; Grice, 2001). This uncertainty increases when the 
number of items measuring a construct is small or when the 
factor loadings are small relative to the unique item varian
ces (i.e., low reliability; Acito & Anderson, 1986). To avoid 
biased estimates of the AR and CR parameters, this uncer
tainty needs to be accounted for, which is the primary 
objective of 3S-LVAR. Its three steps will now be described 
in detail.

2.3.1. Step 1: Estimating the Measurement Model
In the first step, the MM (see Equation (1)) is evaluated 
with confirmatory factor analysis. The model parameters 
(intercepts, factor loadings, factor variances, and residual 
variances) are estimated using Maximum Likelihood esti
mation (Raykov & Marcoulides, 2006). Each of the Q 
constructs is evaluated separately to improve the robust
ness against misspecifications in the MM (see the 
“measurement blocks” in SAM; Rosseel & Loh, 2022). 
Note that in ILD, researchers usually try to obtain the 
average within-person factor structure. However, since 3S- 
LVAR uses regular rather than multilevel factor analysis, 
the resulting factor structure could be a mixture of 
within- and between-person factor structures (Hamaker 
et al., 2017). To avoid this potential conflation without 
switching to multilevel modeling, researchers should apply 
regular factor analysis to person-mean centered data 
because this type of centering removes any between-per
son variation (Bolger & Laurenceau, 2013). However, cen
tering on the observed means creates a correlation 
between the predictors (i.e., git−1) and the error terms, 
leading to an underestimation of the AR parameters 
(Nickell’s bias; Nickell, 1981). Latent-mean centering 
(Asparouhov & Muth�en, 2018) avoids this bias by 
accounting for the error in the sample mean estimates 
and is thus recommended. It is also possible to approxi
mate this bias and correct for it, as we propose in Online 
Supplemental Material OSM-B. Further note that standard 
factor analysis is used, implying that all observations are 
treated as independent (e.g., 30 subjects with 50 observa
tions each are treated as 1500 independent observations). 
Although the point estimates of the MM parameters are 
still unbiased when the temporal dependence of observa
tions is ignored (Molenaar & Nesselroade, 2009), it is 

essential to use cluster-robust SEs that account for these 
dependencies (Abadie et al., 2023).

2.3.2. Step 2: Obtaining Factor Scores
In the second step, we compute the (predicted) factor scores 
ĝit with

ĝit ¼ A yit − lð Þ, (3) 

where A pertains to the factor scoring matrix and l to the 
vector of indicator means. For example, in the case of 
regression factor scores A is given by Skrondal and Laake, 
(2001)

AR ¼ WK
0

R−1, (4) 

where W refers to the Q�Q matrix of factor (co)variances, 
R ¼ KWK

0

þH to the model-implied covariance matrix of 
the indicators, and H to the J� J matrix with the unique 
item variances on the diagonal and (typically) zeros on the 
off-diagonal.

The factor scores are used as single indicators for the 
respective latent variables. To account for their uncertainty, 
we fix their loadings to K� ¼ AK and their residual varian
ces to H� ¼ AHA0 (Vermunt, 2024). Under this specifica
tion, the model-implied variances of the factor scores equal 
their observed values. A convenient feature of regression 
factor scores is that k�q for a single factor q equals the 
model-based reliability qq, which in turn is equal to the 
ratio of the variance of the factor scores to the total factor 
variance wq (which was estimated in step 1). Moreover, h�q 
can be computed with wqqq 1 − qq

� �
(Vermunt, 2024).

2.3.3. Step 3: Estimating the Structural Model
In the third step, the parameters of the SM (see Equation 2) 
are estimated by regressing git on git−1, using the factor 
scores ĝit and ĝit−1 as single indicators with fixed loadings 
K� and residual variances H�: To obtain ĝit−1, lagged ver
sions of the factor score variables are created by duplicating 
the data and “shifting” the values by one row (see Figure C1 
in the Online Supplemental Material OSM-C).5

The model is estimated using a Maximum Likelihood 
estimator (Raykov & Marcoulides, 2006). Due to the pair
wise regression, this can be considered a pseudo Maximum 
Likelihood estimation since it does not consider all data 
points of an individual simultaneously. As in step 1, cluster- 

5Note that this procedure leads to a difference in the values between the 
lagged variables (the predictors in the VAR model) and non-lagged variables 
(the outcomes). Since the scores prior to the first observation are unknown, 
the values of the predictors are missing for the first observation. 
Consequently, the predictors have one less known value in every individual 
(for example, with 50 observations, they will have 49 values and one NA 
each), and the variances will differ slightly between the lagged and non- 
lagged variables of the same construct. To counteract this, it is necessary to 
create an additional row for every individual in the data set, which represents 
the (unobserved) data after the last measurement occasion. For this 
observation, the outcomes are missing, but the predictors are not. After 
adding the additional row, both the predictor and outcome variables of the 
same construct include the same data, and thus their variances are equal. 
Note that the Maximum Likelihood estimation in lavaan can handle missing 
values.
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robust SEs must be computed to account for the nested 
structure of the data (Abadie et al., 2023). However, these 
SEs may be inaccurate because they do not consider add
itional variance that is carried over from the previous steps. 
This occurs because the step 2 parameters K� and H� are 
treated as known in step 3, despite being computed from 
the estimated step 1 parameters. In the OSM-A, we describe 
a standard way of computing SEs in stepwise estimation, 
where (functions of) estimated parameters are treated as 
fixed in later steps (Bakk et al., 2014; Gong & Samaniego, 
1981).

The three steps can be implemented in standard statis
tical software that allows estimating latent variables, such as 
the R package lavaan (Rosseel, 2012). Wrapper functions 
for lavaan that automate these steps are provided on 
GitHub (https://github.com/mt-rein/3S-LVAR), and their 
application is illustrated in Section 4.

3. Simulation Study

3.1. Problem

We conducted a simulation study to evaluate how well 3S- 
LVAR performs in obtaining correct estimates of the AR 
and CR parameters and the SEs. We expected 3S-LVAR to 
outperform the naïve stepwise approach in which factor 
scores are used in a VAR model without correction for the 
factor scores’ inherent uncertainty, in the following referred 
to as naïve factor scores (NFS). As reference points, we also 
compared 3S-LVAR to stepwise estimation with the (local) 
SAM approach (Rosseel & Loh, 2022), which is available in 
lavaan, and simultaneous (one-step) estimation with stand
ard SEM. The models specified and estimated in these 
analyses are visualized in Figures C2 to C4 in OSM-C. For 
3S-LVAR, cluster-robust SEs were computed with and with
out the proposed correction for stepwise estimation (see 
Table C1 in OSM-C). For NFS we computed cluster-robust 
SEs in step 3 but did not apply the SE correction (since 
researchers who would not correct the parameter estimates 
for measurement error are unlikely to adjust the SEs). Since 
SEM is a one-step estimation, the SE correction is not appli
cable, but cluster-robust standard errors are calculated. The 
implementation of SAM in lavaan also adjusts the SEs for 
stepwise estimation (Rosseel & Loh, 2022), but does not 
offer cluster-robust SEs. Note that the corrections for step
wise estimation in 3S-LVAR and SAM are based on the 
same standard procedure (Bakk et al., 2014; Gong & 
Samaniego, 1981), but may be implemented differently and 
thus lead to slightly different results.

Performance was rated with respect to three criteria: bias 
and variability of the estimated AR and CR coefficients, and 
SE recovery. Overall, we expected 3S-LVAR, SAM, and SEM 
to yield unbiased estimates of the regression parameters, 
while NFS was predicted to underestimate them. 3S-LVAR 
was expected to underestimate the SEs before correction but 
yield accurate estimates after correction. SEM was predicted 
to obtain correct SE estimates. Since cluster-robust SEs were 
not available for SAM, we expected these SEs to be 

underestimated. The NFS approach was also expected to 
underestimate the SEs.

To evaluate the performance under different conditions, 
seven aspects were manipulated. The first aspect concerned 
the SM. Specifically, we manipulated the size of the AR and 
CR effects. In line with earlier findings (Devlieger et al., 
2016), the bias in the AR and CR estimates of NFS and the 
SEs was expected to be stronger for larger effect sizes.

The second and third aspects involved the sample size. 
We manipulated the number of individuals (I) and the 
number of observations per individual (T). Larger sample 
sizes improve the precision of estimates. Consequently, we 
expected the variability of the parameter estimates to 
decrease. Moreover, the SE recovery was expected to 
improve across all four analysis methods when the overall 
sample size increases (Devlieger et al., 2016).

The next three aspects introduced the presence or 
absence of between-person variation in the latent means, the 
innovation variances, and the regression coefficients. We 
expected 3S-LVAR, SAM, and SEM to obtain unbiased 
results regardless of the presence of differences in innov
ation variances or AR and CR effects. However, we pre
dicted to obtain biased estimates of the AR effects for these 
methods in conditions with variation in the latent means 
due to Nickell’s bias. We expected this bias to become 
smaller when T increases (Nickell, 1981) and to be elimi
nated by the correction described in OSM-B.6 For NFS, we 
expected the bias to remain the same in conditions with 
and without differences in innovation variances or AR and 
CR effects, and to become larger in conditions with vari
ation in the latent means. Similarly to the other three meth
ods, this additional bias was expected to become smaller for 
larger values of T and to be eliminated with the proposed 
correction.

The seventh and most crucial aspect refers to the degree 
of uncertainty in the factor scores, which was manipulated 
by adjusting the model-based reliabilities (q). Ignoring the 
factor scores’ inherent uncertainty has been shown to bias 
the estimates of regression parameters (Devlieger et al., 
2016; Devlieger & Rosseel, 2017). For low values of q, we 
thus expected 3S-LVAR, SAM, and SEM to outperform NFS 
in obtaining correct point estimates. This difference should 
diminish and disappear as q approaches 1. Similarly, the SE 
recovery was expected to improve when q increases 
(Devlieger et al., 2016).

3.2. Design and Procedure

The seven manipulated aspects included the following levels:

a. effect sizes in U: “small effects” U 5 
:3 :15
:15 :3

� �

, 

“large effects” U 5 
:6 :3
:3 :6

� �

;

6Note that Nickell’s bias can be avoided entirely using latent-mean centering, 
which will be discussed in the discussion section. However, this is beyond the 
scope of this paper as this is not straightforward to implement in the SEM 
framework in R, which is the focus of our article.
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b. person-level sample size I: 25, 50;
c. observation-level sample size T: 25, 50;
d. between-person differences in latent means: no, yes;
e. between-person differences in regression coefficients: 

no, yes;
f. between-person differences in innovation variance: 

no, yes;
g. model-based reliability q: .5, .7., .9., .999;

The design resulted in 2� 2 � 2� 2 � 2� 2 � 4¼ 256 
conditions. The size of the regression coefficients in U was 
chosen such that it still satisfies the stationarity requirement 
in the “large effects” condition, and was then halved for the 
“small effects” condition. The chosen values for I and T are 
commonly found in studies that collect ILD (Can, 2020; van 
Berkel et al., 2017). For example, 25 observations roughly 
mirror an ESM design with four observations on seven 
days. For each cell of the design, 500 data sets (128,000 in 
total) were generated in R Version 4.4.1 (R Core Team, 
2024) and analyzed with the four methods described above 
using lavaan 0.6-18 (Rosseel, 2012). Every data set com
prised I time series of length T with two latent constructs 
measured by four items each and with equidistant observa
tions. The simulation and analysis code can be found on 
https://osf.io/d6hs7.

3.3. Results

In the following, we evaluate the performance of 3S-LVAR 
and compare it to NFS, SEM, and SAM. There were no 
errors or non-convergences for 3S-LVAR, NFS, and SEM, 
but SAM led to an error in 58 data sets. These were re-esti
mated once, but the error persisted. We thus removed these 
data sets and report the results for 127,942 data sets below.

The results are reported separately for conditions without 
and with between-person differences in the latent means 
because we expected Nickell’s bias in the latter. 
Additionally, since the two AR and two CR parameters 
showed nearly identical performance across all measures, we 
report estimates for only one AR (u11) and one CR (u12) 
parameter each. The results for u22 and u21 can be found in 
OSM-C, Tables C3 and C4.

To examine the goodness of the regression parameter 
recovery, we computed the absolute bias as the difference 
between the mean of the parameter estimates within a con
dition and the true parameter value. The relative bias scales 
the absolute bias by the true parameter value. To assess the 
estimates’ variability, we calculated the Root Mean Square 
Error (RMSE), which is the average squared distance 
between estimated and true parameter values within condi
tions. SE recovery was assessed by dividing the average esti
mated SE for all replications within a condition by the 
standard deviation of the estimates across these replications. 
A value of 1 indicates that the SE estimator performs well. 
Values smaller than 1 indicate that (on average) the SEs are 
underestimated, while values greater than 1 indicate that 
they are overestimated. Equations for these criteria are dis
played in OSM-C (Table C2).

3.3.1. No Differences in Latent Means
As expected, 3S-LVAR, SAM, and SEM obtained unbiased 
parameter estimates across all conditions (see Table 1).7

Further in line with our expectations, NFS underestimated 
the regression parameters across all conditions. This effect 
was more pronounced in the AR parameters (mean absolute 
and relative bias were −.07 and −0.19, respectively) than in 
the CR parameters (mean absolute and relative bias of −.01 
and −0.08, respectively). For NFS, larger effect sizes led to 
greater absolute bias in the AR parameters as hypothesized, 
but its relative bias slightly decreased. Moreover, for the CR 
parameter the absolute bias remained unchanged when the 
effect sizes increased, while the relative bias increased. 
Increasing the number of individuals or observations did 
not affect the bias for any method. It also did not reduce 
the RMSE substantially, which contradicted our expecta
tions. Finally, as expected the parameter recovery of NFS 
improved when q increased until this approach performed 
equally well as the other methods when q approached 1.

The SE recovery results are also displayed in Table 1. 
Note that for 3S-LVAR, we report results with and without 
the correction for stepwise estimation. In line with our 
expectations, SEM estimated the SEs accurately in all condi
tions (mean ratio was 1 and 1.01 for AR and CR parame
ters, respectively). Contrary to expectation, the SEs obtained 
with 3S-LVAR were recovered accurately without the SE 
correction for stepwise estimation (average ratio ¼ .99 for 
both parameters), but SEs were overestimated with the cor
rection (average ratio ¼ 1.14 and 1.1 for AR and CR param
eters, respectively). This overestimation was higher when q 

was small. When q approached 1, the difference between 
the adjusted and unadjusted SEs disappeared. Moreover, 
larger effect sizes also increased the overestimation, while 
neither the sample size nor between-person differences in 
innovation variances or regression parameters affected the 
SE recovery substantially. SAM also overestimated the SEs 
(mean SE recovery was 1.09 and 1.04 for AR and CR 
parameters, respectively) and showed the same pattern with 
respect to the manipulated aspects. Finally, NFS also 
obtained accurate estimates for the SEs of the AR parame
ters (average ratio ¼ .98) but underestimated those of the 
CR parameters (average ratio ¼ .96). This underestimation 
is more pronounced when effect sizes are large or q is 
small.

3.3.2. With Differences in Latent Means
As expected, all methods obtained biased estimates of the 
AR effect in the conditions with between-person differences 
in the latent means (see Table 2). This bias becomes smaller 
when T increases. The proposed correction reduced the bias 
and performed better as q increases, fully eliminating the 
bias when q approached 1. Moreover, the CR parameter is 
slightly overestimated when q is small, but underestimated 
when q is large. The effects of manipulating the remaining 

7Note that, in the presence of between-person differences in the innovation 
variances or AR and CR effects (aspects e and f), this means that the average 
or fixed effect is estimated without bias.
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aspects were the same as in the previous section. For brev
ity, we thus only included the overall results and those of 
the aspects reliability (q) and number of observations (T) in 
Table 2. The full table can be found in OSM-C, Table C5.

3.4. Conclusion

The results of the simulation study demonstrate that 3S- 
LVAR obtains unbiased point estimates of the AR and CR 

Table 1. Bias, root mean square error, and standard error recovery for conditions without latent mean differences.

Manipulated aspect Level Method

Parameter

AR (u11) CR (u12)

AB RB RMSE SER AB RB RMSE SER

Overall 3S-LVAR 0 −0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.1)
NFS −0.07 −0.19 0.08 0.98 −0.01 −0.08 0.03 0.96
SAM 0 −0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01

Effect sizes (U) small 3S-LVAR 0 −0.01 0.04 0.98 (1.06) 0 0 0.04 0.99 (1.03)
NFS −0.05 −0.2 0.06 0.98 −0.01 −0.11 0.03 0.98
SAM 0 −0.01 0.04 1.04 0 0 0.04 1.01
SEM 0 0 0.04 0.99 0 0 0.04 1

large 3S-LVAR 0 0 0.04 1.01 (1.23) 0 0 0.04 1 (1.16)
NFS −0.09 −0.18 0.1 0.98 −0.01 −0.04 0.03 0.94
SAM 0 0 0.04 1.14 0 0 0.04 1.06
SEM 0 0 0.04 1.02 0 0 0.04 1.03

Individuals (I) 25 3S-LVAR 0 −0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.1)
NFS −0.07 −0.2 0.08 0.97 −0.01 −0.08 0.03 0.96
SAM 0 −0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.02

50 3S-LVAR 0 0 0.03 1 (1.15) 0 0 0.03 0.99 (1.09)
NFS −0.07 −0.19 0.08 0.99 −0.01 −0.07 0.03 0.96
SAM 0 0 0.03 1.09 0 0 0.03 1.03
SEM 0 0 0.03 1.01 0 0 0.03 1.01

Observations (T) 25 3S-LVAR 0 −0.01 0.04 1 (1.15) 0 0 0.04 0.99 (1.1)
NFS −0.07 −0.19 0.08 0.98 −0.01 −0.08 0.03 0.96
SAM 0 −0.01 0.04 1.1 0 0 0.04 1.04
SEM 0 0 0.04 1.01 0 0 0.04 1.02

50 3S-LVAR 0 0 0.03 0.99 (1.14) 0 0 0.03 0.99 (1.09)
NFS −0.07 −0.19 0.08 0.98 −0.01 −0.07 0.03 0.96
SAM 0 0 0.03 1.08 0 0 0.03 1.03
SEM 0 0 0.03 1 0 0 0.03 1.01

Variation in U yes 3S-LVAR 0 0 0.04 1 (1.15) 0 0 0.04 0.99 (1.1)
NFS −0.07 −0.19 0.08 0.99 −0.01 −0.07 0.03 0.96
SAM 0 0 0.04 1.09 0 0 0.04 1.03
SEM 0 0 0.04 1.01 0 0 0.04 1.01

no 3S-LVAR 0 −0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.09)
NFS −0.07 −0.2 0.08 0.98 −0.01 −0.08 0.03 0.96
SAM 0 −0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01

Variation in Ζ yes 3S-LVAR 0 −0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.1)
NFS −0.07 −0.19 0.08 0.98 −0.01 −0.08 0.03 0.96
SAM 0 −0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01

no 3S-LVAR 0 −0.01 0.04 1 (1.14) 0 0 0.04 0.99 (1.09)
NFS −0.07 −0.19 0.08 0.98 −0.01 −0.07 0.03 0.96
SAM 0 −0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01

Reliability (q) .5 3S-LVAR 0 −0.01 0.06 1.02 (1.55) 0 0 0.06 1.01 (1.37)
NFS −0.16 −0.43 0.16 0.98 −0.04 −0.22 0.04 0.91
SAM 0 −0.01 0.06 1.22 0 0 0.06 1.09
SEM 0 0 0.06 1.04 0 0.01 0.06 1.05

.7 3S-LVAR 0 −0.01 0.04 1 (1.06) 0 0 0.04 0.99 (1.03)
NFS −0.09 −0.25 0.09 0.99 −0.01 −0.07 0.03 0.95
SAM 0 −0.01 0.04 1.13 0 0 0.04 1.04
SEM 0 0 0.04 1.01 0 0 0.04 1.01

.9 3S-LVAR 0 0 0.03 0.98 (0.98) 0 0 0.03 0.99 (0.99)
NFS −0.03 −0.08 0.04 0.98 0 −0.01 0.02 0.98
SAM 0 0 0.03 1.03 0 0 0.03 1.01
SEM 0 0 0.03 0.98 0 0 0.03 1

.999 3S-LVAR 0 0 0.02 0.98 (0.98) 0 0 0.02 0.99 (0.99)
NFS 0 −0.01 0.02 0.98 0 0 0.02 0.99
SAM 0 0 0.02 0.98 0 0 0.02 1
SEM 0 0 0.02 0.98 0 0 0.02 0.99

Note. Numbers in brackets pertain to the standard errors that were adjusted for stepwise estimation.
AB: absolute bias; RB: relative bias; RMSE: Root Mean Square Error; SER: Standard Error Recovery; AR: autoregressive parameter (construct 1 regressed on itself); 
CR: crossregressive parameter (construct 1 regressed on construct 2); 3S-LVAR: Three-Step Latent Vector Autoregression; NFS: naïve factor scores; SAM: struc
tural-after-measurement approach; SEM: structural equation modeling.
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parameters under various conditions in the absence of 
between-person differences in the latent means. In the pres
ence of such differences, the bias resulting from the 
observed-mean centering can at least partially be corrected 
for. Overall, the method obtains the same point estimates as 
stepwise estimation with SAM, with only marginal differen
ces to one-step SEM. Importantly, using factor scores 

without correcting for their uncertainty (NFS) yields biased 
parameter estimates. Interestingly, 3S-LVAR accurately esti
mated the SEs even without adjusting them for stepwise 
estimation, whereas the adjustment overestimates the SEs, 
particularly for lower values of q. This means that the 
adjusted SEs may be too conservative, which can reduce the 
power of the hypothesis test.

Table 2. Bias and RMSE for selected conditions with latent mean differences.

Manipulated  
aspect Level Method

Parameter

AR (u11) CR (u12)

AB RB RMSE AB RB RMSE

Overall 3S-LVAR −0.06 −0.17 0.06 0 0 0.04
3S-LVAR (adj) −0.02 −0.05 0.04
NFS −0.12 −0.32 0.12 −0.02 −0.13 0.03
NFS (adj) −0.08 −0.2 0.08
SAM −0.06 −0.17 0.06 0 0 0.04
SAM (adj) −0.02 −0.05 0.04
SEM −0.06 −0.17 0.06 0 0 0.04
SEM (adj) −0.02 −0.05 0.04

Observations (T) 25 3S-LVAR −0.08 −0.23 0.08 0 0 0.05
3S-LVAR (adj) −0.02 −0.07 0.05
NFS −0.13 −0.37 0.13 −0.03 −0.14 0.04
NFS (adj) −0.08 −0.21 0.09
SAM −0.08 −0.23 0.08 0 0 0.05
SAM (adj) −0.02 −0.07 0.05
SEM −0.08 −0.23 0.08 0 0.01 0.05
SEM (adj) −0.02 −0.07 0.05

50 3S-LVAR −0.04 −0.11 0.04 0 0 0.03
3S-LVAR (adj) −0.01 −0.03 0.03
NFS −0.1 −0.27 0.1 −0.02 −0.11 0.03
NFS (adj) −0.07 −0.2 0.08
SAM −0.04 −0.11 0.04 0 0 0.03
SAM (adj) −0.01 −0.03 0.03
SEM −0.04 −0.11 0.04 0 0 0.03
SEM (adj) −0.01 −0.03 0.03

Reliability (q) .5 3S-LVAR −0.08 −0.24 0.09 0 0 0.05
3S-LVAR (adj) −0.04 −0.12 0.07
NFS −0.21 −0.56 0.21 −0.05 −0.28 0.05
NFS (adj) −0.17 −0.45 0.17
SAM −0.08 −0.24 0.09 0.01 0.07 0.06
SAM (adj) −0.04 −0.12 0.07
SEM −0.08 −0.24 0.09 0.01 0.08 0.06
SEM (adj) −0.04 −0.12 0.07

.7 3S-LVAR −0.06 −0.17 0.07 0 0.01 0.04
3S-LVAR (adj) −0.02 −0.05 0.04
NFS −0.14 −0.38 0.14 −0.02 −0.13 0.03
NFS (adj) −0.1 −0.26 0.1
SAM −0.06 −0.17 0.07 0 0.01 0.04
SAM (adj) −0.02 −0.05 0.04
SEM −0.06 −0.17 0.06 0 0.01 0.04
SEM (adj) −0.02 −0.05 0.04

.9 3S-LVAR −0.05 −0.14 0.05 −0.01 −0.03 0.03
3S-LVAR (adj) −0.01 −0.02 0.03
NFS −0.07 −0.21 0.07 −0.01 −0.05 0.03
NFS (adj) −0.03 −0.09 0.04
SAM −0.05 −0.14 0.05 −0.01 −0.03 0.03
SAM (adj) −0.01 −0.02 0.03
SEM −0.05 −0.14 0.05 −0.01 −0.03 0.03
SEM (adj) −0.01 −0.02 0.03

.999 3S-LVAR −0.04 −0.13 0.05 −0.01 −0.04 0.03
3S-LVAR (adj) 0 0 0.03
NFS −0.05 −0.14 0.05 −0.01 −0.04 0.03
NFS (adj) −0.01 −0.01 0.03
SAM −0.04 −0.13 0.05 −0.01 −0.04 0.03
SAM (adj) 0 0 0.03
SEM −0.04 −0.13 0.05 −0.01 −0.04 0.03
SEM (adj) 0 0 0.03

Note. AB: absolute bias; RB: relative bias; RMSE: Root Mean Square Error; AR: autoregressive parameter (construct 1 regressed on itself); CR: crossregressive par
ameter (construct 1 regressed on construct 2); 3S-LVAR: Three-Step Latent Vector Autoregression; NFS: naïve factor scores; SAM: structural-after-measurement 
approach; SEM: structural equation modeling; (adj): adjusted for Nickell’s bias.
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4. Empirical Example

In the following, we apply the 3S-LVAR method to an 
empirical data set (Nezlek & Kuppens, 2008). The data set 
contains self-report measures of emotion from 68 male and 
85 female undergraduates that were collected across four 
weeks. Every evening, participants rated to what extent they 
experienced positive emotions (e.g., to what extent they felt 
enthusiastic or joyful) and negative emotions (e.g., guilty or 
upset) on a 7-point Likert Scale. The participants provided 
between 10 and 28 daily measures each (M¼ 20.1, 
SD¼ 2.95, 3072 observations in total).

Specifically, we explore to what extent four constructs 
related to emotional experience interact with themselves and 
one another from one day to the next. Our constructs of 
interest were positive activated affect, positive deactivated 
affect, negative activated affect, and negative deactivated 
affect.8 Positive activated affect was measured with enthusias
tic, happy, active, energetic, alert, proud, and joyful. Positive 
deactivated affect was measured with calm, satisfied, and 
relaxed. Negative activated affect was measured with the 
items guilty, nervous, afraid, angry, ashamed, embarrassed, 
upset, and disgusted. Lastly, negative deactivated affect was 
measured with sluggish, sad, tired, bored, and sleepy.

The functions are available on https://github.com/mt- 
rein/3S-LVAR. The repository also includes instructions on 
how to install and load the functions. Before beginning with 
the analysis, the user needs to ensure that the data are in 
the long format and sorted by participant and time-point. 
Moreover, the time interval between observations of any 
individual must be roughly equivalent. Thus, missing obser
vations (i.e., a participant did not fill in the survey when 
prompted) should not be removed when cleaning the data. 
Finally, the observations should be within-person mean cen
tered to disaggregate within- and between-person effects 
(Bolger & Laurenceau, 2013). A helper function for this is 
also provided on GitHub.

4.1. Step 1: Estimating the Measurement Model

The first step is performed using the function step1(), 
which has three arguments. The first argument (data) 
indicates the data object. The second argument (measure
mentmodel) requires specifying the MM using the lavaan 
syntax (see https://lavaan.ugent.be/tutorial). The third argu
ment (id) provides the name of the variable that indicates 
which observation belongs to which individual. The follow
ing code performs this step for the example data:

model <- “ 

PA_act ¼� ENTHUSþHAPPYþACTIVEþENERGþALERTþPROUDþJOY 

PA_deact ¼� CALMþSATISþRELAX 

NA_act ¼�

GUILTYþNERVEþAFRAIDþANGRYþASHAMEþEMBARþUPSETþDISG 

NA_deact ¼� SLUGþSADþTIREDþBOREDþSLEEP 

“ 

output_step1 <- step1(data ¼ data, measurementmodel ¼ model, 

id ¼ ”numid”)  

The first command creates an object with lavaan syntax 
to designate which latent construct is measured by which 
variable in the data set. The operator ¼� represents factor 
loadings. The second command estimates the MM and saves 
the output in the object output_step1. The output com
prises two elements: fit_step1 is the lavaan fit object 
(which can be inspected with the summary() function), 
and data is the data set that has been used to estimate the 
model (which is needed again in step 2).

4.2. Step 2: Obtaining Factor Scores

Next, the output of step1() is entered into the step2() 
function to perform the second step. This function has one 
argument (step1output), as demonstrated in the follow
ing code:

output_step2 <- step2(step1output ¼ output_step1)  

The output comprises four elements: data is the original 
data set with appended regression factor scores, lambda_ 
star and theta_star are vectors containing the diago
nals of K� (whose values equal the reliabilities q) and H�, 
respectively, and fit_step1 is the lavaan fit object from 
step 1.

4.3. Step 3: Estimating the Structural Model

The third step is performed using step3(). This function 
has two arguments: step2output provides the output of 
step2(), and structuralmodel specifies the SM 
using lavaan syntax9. The latter is optional. If it is omitted, 
the function automatically specifies a SM that includes the 
auto- and crossregressive effects between all constructs. The 
following code performs this step with the default VAR 
model and prints the model summary:

output_step3 <- step3(step2output ¼ output_step2) 

summary(output_step3$fit)  

The output comprises three elements. First, fit_step3 
is the lavaan object of estimating the SM. It can be used in 
the summary() function to obtain an overview of the fit
ted model. Second, data contains the data set used to esti
mate the model. Note that step3() automatically creates 
lagged variables and an additional row per participant. 
Third, phi is the matrix of estimated regression 
parameters.

4.4. Standard Error Adjustment

The SEs can be adjusted to account for the stepwise proced
ure (see OSM-A) using the function stepwiseSE() 

8These constructs refer to a circumplex model of affect with the dimensions 
valence (positive/negative) and arousal (activated/deactivated, Feldman Barrett 
& Russel, 1998).

9See the README on GitHub for more information on how to specify the SM 
manually.
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shown below. Its two arguments (step2output and 
step3output) require the output of step2() and 
step3(), respectively.

adjustedSE <- stepwiseSE(step2output ¼ output_step2, 

step3output ¼ output_step3)  

The output provides three vectors that contain adjusted 
values: SE, z_values, and p_values. Note that the 
function is computationally expensive and can take several 
minutes for models with multiple latent variables. For 
instance, using the SE adjustment in our example (with four 
factors) took 8 minutes. Moreover, the simulation study 
results indicate that the correction may overestimate the 
SEs, which may reduce the power to detect existing effects.

4.5. Results

For the constructs in the example, the values of q were .86 
for positive activated affect, .65 for positive deactivated affect, 
.81 for negative activated affect, and .84 for negative deacti
vated affect. Thus, positive deactivated affect had the lowest 
model-based reliability, likely because it was measured by 
the fewest items (Grice, 2001). Table 3 displays the point 
estimates and the adjusted SEs of the AR and CR parame
ters for 3S-LVAR and naïve factor scores (i.e., using factor 
scores in the VAR model without correcting for their inher
ent uncertainty).

Using 3S-LVAR, all AR effects were significant (p < .05) 
and ranged from .3 to .43, which means that emotional 
experience carried over substantially from one day to the 
next. However, only one out of 12 CR effects was significant: 
a high score on positive activated affect predicted a high score 
on negative deactivated affect on the next day (u ¼ .16). 
When using naïve factor scores, the estimates for the 
AR parameters were generally lower compared to using 
3S-LVAR. This was most noticeable for positive deactivated 
affect, which had the lowest reliability (q ¼ .65): The param
eter estimate was twice as large when using 3S-LVAR. For 
the other parameters with rather high reliabilities, the differ
ences were less pronounced. Overall, the conclusions regard
ing the AR parameters remained the same. However, there 
were was a notable difference with respect to the CR parame
ters. The effect of positive activated affect on positive deacti
vated affect was significant and positive when using naïve 
factor scores, but non-significant and negative for 3S-LVAR. 
This demonstrates that neglecting to account for the factor 
scores’ uncertainty can change the statistical inferences drawn 
from the data.

5. Discussion

In this article, we introduced 3S-LVAR, a three-step 
approach for estimating VAR models with latent variables. 
The proposed method adheres as closely as possible to the 
intuitive stepwise approach applied researchers use to study 
dynamics in psychological constructs (i.e., first obtaining the 
MM of the latent variables, then computing factor scores, 

and finally using these in VAR modeling). In 3S-LVAR, this 
approach is modified by considering the uncertainty of the 
factor scores (which is caused by measurement error in the 
data) in the final step. The simulation study showed that 
3S-LVAR greatly outperforms the naïve approach and is on 
par with the SEM and SAM methods in recovering the 
parameters of a bivariate dynamic process. The novel modi
fication of the conventional stepwise approach can be seen 
as a first building block that offers potential for future 
extensions.

One such extension could be related to heterogeneity in 
the SM. While 3S-LVAR models intra-individual variation 
(i.e., within-person differences) in the constructs of interest, 
it currently does not account for between-person differences 
in the psychological processes (i.e., the parameters of the 
SM). The proposed pairwise estimation with SEM obtains 
unbiased estimates of the average AR and CR parameters 
when there is between-person variation in the regression 
parameters or innovation variances. However, the estimates 
become biased when observed-mean centering. This bias 
can be avoided with latent-mean centering, which is imple
mented in the DSEM framework in Mplus (Asparouhov & 
Muth�en, 2018). In R, latent-mean centering can be achieved 
by including a random intercept in the model. This is theor
etically possible in SEM (Usami et al., 2019) but the estima
tion becomes computationally expensive for models with 
many time-points, as the model-implied covariance matrix 
grows quadratically with the number of time points. A bet
ter alternative is to use State Space Modeling, which is a 
latent variable model that is specifically designed to incorp
orate dynamics (Hunter, 2017).

Furthermore, 3S-LVAR could be extended to model het
erogeneity in AR and CR parameters or innovation varian
ces instead of simply estimating an average effect: First, 
covariates can be used to find between-group differences 
(e.g., whether an intervention and a control group differ in 
their emotional inertia). Second, with multi-level modeling 
the parameters can be allowed to vary across individuals 
(random effects). Third, clustering (such as mixture model
ing) can be used to find latent classes based on the SM 
parameters (i.e., groups of individuals that share similar AR 
and CR effects).

Table 3. Auto- and crossregressive effects using 3S-LVAR and naïve factor 
scores.

Predictor
Outcome PA act PA deact NA act NA deact

Using 3S-LVAR
PA act 0.31 (0.07)� 0.07 (0.1) 0.08 (0.05) 0.07 (0.04)
PA deact −0.01 (0.07) 0.43 (0.11)� 0.07 (0.05) 0.06 (0.04)
NA act 0.07 (0.04) −0.09 (0.07) 0.3 (0.05)� −0.02 (0.03)
NA deact 0.16 (0.06)� −0.17 (0.09) 0 (0.05) 0.36 (0.04)�

Using Naïve Factor Scores
PA act 0.26 (0.03)� 0.08 (0.04) 0.05 (0.04) 0.05 (0.03)
PA deact 0.06 (0.02)� 0.21 (0.03)� 0 (0.02) 0.05 (0.02)�

NA act 0.03 (0.02) −0.05 (0.03) 0.26 (0.04)� −0.02 (0.02)
NA deact 0.06 (0.02)� −0.06 (0.04) 0.03 (0.03) 0.29 (0.03)�

Note. Numbers in brackets represent the standard errors. The auto-regressive 
effects have been adjusted for Nickell’s bias. PA act: positive activated affect; 
PA deact: positive deactivated affect; NA act: negative activated affect; NA 
deact: negative deactivated affect. �indicates a p-value lower than .05.
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Besides heterogeneity in the SM, there can also be 
between-person differences in the MM (i.e., measurement 
non-invariance), such as differences in the factor loadings. 
Ignoring these can bias the estimates of the SM (Chen, 
2008; Guenole & Brown, 2014). 3S-LVAR could consider 
measurement non-invariance by estimating (partially) per
son-or group-specific MMs in step 1 and person- or group- 
specific fixed loadings K� and residual variances H� in step 
2 (see Lai et al., 2023).

Moreover, the measurement intervals are assumed to be 
equally spaced (e.g., one measurement every evening at 
8 pm). However, ILD are typically collected at (semi)random 
time-points throughout the day (Scollon et al., 2009). 
Additionally, participants are usually not prompted during 
the night, leading to considerably longer night intervals than 
day intervals. To account for this, 3S-LVAR could be 
extended to continuous time modeling (Driver et al., 2017).

In addition, 3S-LVAR uses Maximum Likelihood estima
tion and thus assumes that the indicator variables are con
tinuous and normally distributed. Psychologists commonly 
use categorical and/or non-normally distributed items (Cain 
et al., 2017). However, with a sufficient number of response 
options (e.g., five or more) these variables can be treated as 
continuous if the non-normality is not too severe (Norman, 
2010). In addition, 3S-LVAR could be extended to use item 
response theory instead of confirmatory factor analysis in 
the first step (Lai & Hsiao, 2022).

Lastly, contrary to our expectations the results of the 
simulation study revealed that the proposed SE correction 
for 3S-LVAR overestimated the sampling variance of the AR 
and CR parameters (i.e., the SEs may be overcorrected) for 
small or medium values of q. The uncorrected SEs were 
accurate and similar to those obtained by one-step SEM in 
all conditions. SAM (which uses a correction based on the 
same standard procedure) also overestimated the SEs. At 
least in the conditions explored in the current article’s simu
lation study, using cluster-robust SEs in steps 1 and 3 was 
sufficient to obtain accurate SEs. Bakk et al. (2014) also 
found that correcting for stepwise estimation is not always 
necessary and may lead to overly conservative SEs. 
However, it is important to be cognizant of this adjustment. 
Researchers analyzing ILD may not be concerned about the 
loss of power from overly conservative SEs due to the typic
ally large sample sizes. They may thus prefer to use the cor
rection for a more conservative approach.
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