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ABSTRACT

Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of
positive and negative affect over time. An intuitive approach is to first estimate the measurement
model of the latent variables, then compute factor scores, and finally use these factor scores as
observed scores in vector autoregressive modeling. However, this approach neglects the uncertainty
in the factor scores, leading to biased parameter estimates and threatening the validity of conclusions
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about the dynamic process. We propose Three-Step Latent Vector Autoregression that adheres to this
stepwise procedure while correcting for the factor scores’ uncertainty. Stepwise approaches offer vari-
ous advantages, for example the ability to visualize and inspect the factor scores. A simulation study
demonstrates that the method performs well in obtaining correct parameter estimates of a dynamic
process. We also provide an empirical example and scripts for implementation in the open-source soft-

ware R using the lavaan package.

1. Introduction

In recent years, psychologists have increasingly focused on
the research of within-person processes by collecting and
analyzing intensive longitudinal data (ILD) instead of cross-
sectional data (Hamaker & Wichers, 2017). ILD are
characterized by a large number of repeated measures per
individual over a relatively short period, for instance, six
measures each day for two weeks (Ariens et al., 2020). This
allows researchers to obtain insights into the participants’
daily lives and study psychological processes, (e.g., how
emotions carry over and interact with one another from one
moment to the next; Kuppens & Verduyn, 2017).

To study such processes, researchers often use vector autore-
gressive (VAR) modeling by regressing variables at one time-
point on those at the previous time point (e.g., Liitkepohl,
2005). These models assume that the variables are observed, but
many constructs in psychological research (e.g., positive affect)
are latent. This means that they are not directly observable and,
instead, are measured indirectly through one or more items
(e.g., positive affect can be assessed by asking to what extent a
participant experiences a number of positive emotions, such as
happiness and enthusiasm). The so-called measurement model
(MM) describes which items measure which latent variable and
to what extent (Millsap, 2011). It is commonly evaluated with
item response theory (in case of categorical items; De Ayala,
2022) or factor analysis (in case of continuous items; Lawley &
Maxwell, 1962). In this article, we focus on factor analysis,

where the so-called factors correspond to the latent variables.
VAR models can be extended to accommodate latent variables
by including an MM, resulting in latent vector autoregressive
(LVAR) models.! However, LVAR models are more intricate to
estimate than regular VAR models, because the MM needs to
be estimated in addition to the relations among the factors at
subsequent time-points (the so-called structural model; SM).

One way to estimate LVAR models is using structural
equation modeling (SEM), a one-step approach where the
MM is estimated simultaneously with the SM. However,
applied researchers frequently deviate from it and adopt a
more intuitive, stepwise approach (Vogelsmeier et al., 2024):
First, they solely estimate the MM using factor analysis
while disregarding the SM. Then, the researchers compute
factor scores for all individuals on all measurement occa-
sions. The factor scores represent the positions on the
underlying latent variables identified through the factor ana-
lysis. Finally, the factor scores are used as observed scores in
regular VAR models or Dynamic Structural Equation
Modeling (DSEM; Asparouhov et al., 2018). However, this
naive stepwise estimation ignores the measurement error in
the data and the resulting inherent uncertainty in the factor
scores (Grice, 2001), leading to biased estimates of the SM
(Devlieger et al., 2016; Devlieger & Rosseel, 2017).

To address this issue, several stepwise approaches to SEM
that separate the estimation of the MM and the SM while
accounting for measurement error have been developed in
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recent years (for an overview, see Vermunt, 2024). Examples
are factor score regression and path analysis (Devlieger
et al., 2016; Devlieger & Rosseel, 2017), two-stage path ana-
lysis (Lai & Hsiao, 2022), or the structural-after-measure-
ment (SAM) approach to SEM (Rosseel & Loh, 2022). They
have been shown to obtain unbiased estimates of regression
parameters and to outperform one-step SEM in small sam-
ple sizes (e.g., Kelcey, 2019; Savalei, 2019) as well as in the
presence of misspecifications of the MM (Devlieger &
Rosseel, 2017; Rosseel & Loh, 2022). However, these meth-
ods have been developed for cross-sectional data and may
not readily accommodate LVAR models. For instance, using
standard factor analysis on the stacked data (i.e., on all
time-points and persons simultaneously) treats the observa-
tions across all persons as independent (i.e., the dependence
of observations within a person is ignored). Moreover, VAR
models are typically estimated via pairwise regression; that
is, pairs of adjacent time-points are entered into the regres-
sion equation. This assumes that the scores at a particular
time-point are affected only by the scores from the previous
time-point.

To tailor the stepwise estimation to LVAR models, we pre-
sent and evaluate Three-Step Latent Vector Autoregression
(3S-LVAR) that extends two-stage path analysis (Lai &
Hsiao, 2022) to ILD. Specifically, in the first step, the MM
of each latent variable is evaluated using factor analysis
(Lawley & Maxwell, 1962). In the second step, the factor
scores are computed. In the third step, the SM (i.e., a VAR
model) is estimated by regressing the factor scores on those
from the previous time-point while correcting for their
inherent uncertainty. 3S-LVAR thus effectively combines
the strengths of SEM (i.e., accounting for the measurement
of latent variables) with the intuitiveness of a stepwise
approach, which offers various advantages. The method is
designed to closely adhere to the intuitive procedure often
used in applied research, making it user-friendly and access-
ible. The stepwise procedure allows researchers to scrutinize
(and potentially adjust) the MM before estimating the
parameters of the SM (Bakk et al, 2013; Lai et al., 2023;
McNeish et al.,, 2021; Vermunt, 2010), and also increases
robustness against local model misspecifications (Rosseel &
Loh, 2022). Furthermore, the factor scores generated in the
second step can be visualized and inspected for outliers
(Hallgren et al., 2019) or trends and seasonality in the time
series (Liitkepohl, 2005). Moreover, the factor scores can be
reused in different analyses or by other researchers without
needing to redo the measurement modeling. This distin-
guishes 3S-LVAR from the related SAM approach, which
employs a stepwise estimation but does not provide factor
scores and requires specifying the MM and the SM simul-
taneously. Lastly, while we focus on a simple LVAR model
in the current article, the proposed stepwise estimation is
highly flexible and can be extended to more complex mod-
els (e.g., DSEM). Here, using factor scores while correcting
for their uncertainty can facilitate model estimation by
reducing the dimensionality of the model.

The current article aims to evaluate how well 3S-LVAR
performs in obtaining accurate parameter estimates of an

LVAR model. The paper is organized as follows: Section 2
describes 3S-LVAR in detail. Section 3 presents a simulation
study investigating 3S-LVAR’s ability to obtain correct par-
ameter and standard error (SE) estimates of a dynamic pro-
cess under varying conditions. Section 4 illustrates 3S-LVAR
with an application using the open-source software R (R
Core Team, 2024). The final section discusses limitations
and future directions for research.

2. Method
2.1. Data Structure

ILD pertain to repeated measures nested in individuals.
Observed scores are indicated by y;, where i=1, ..., I
refers to the individuals, j=1, ..., J to the items (observed
variables), and t=1, ..., T to the time-points. The number
of time-points may differ across individuals (i.e., T;), but the
subscript i is omitted in the following for simplicity of nota-
tion. The items measure g=1, ... Q factors (latent varia-
bles). The responses of individual i at time-point ¢ are
captured in the J x 1 vector y,, which are gathered into the
T x ] matrix Y; per individual. We assume that the data are
organized in the so-called long format, where each variable
is represented in a single column, and each row represents
one time-point per subject. For instance, a data set compris-
ing seven variables measured 30 times for 20 individuals has
600 rows and seven columns.

2.2. The Latent Vector Autoregressive Model

The specification of an LVAR model comprises two parts.
First, the MM describes which items measure which factor
and captures the strength of the relationship between the
observed items and the underlying factor. Second, the SM
describes to what extent the factors predict themselves and
each other at consecutive measurement occasions. Figure 1
shows an example of an LVAR model with two latent fac-
tors that are measured by three items each.”

The MM for a single observation is given by Lawley &
Maxwell, (1962)

Vi = T+ ANy, + &, (1)

where the Jx 1 vector t represents the item intercepts and
A indicates the ] x Q matrix of factor loadings. The Q x 1
vector 1, comprises the (true) latent variable scores’ of
individual i at time-point ¢, and &; is a J x 1 vector of resid-
uals, which are assumed to be independent of n;,.

2The model posits that the observations at time-point t only depend on those
at the previous time-point t— 1. In other words, there is no direct effect of,
for example, n;_, on #;, and the association between these two observations
is fully mediated through #;_,. In this article, we focus on this so-called lag-1
model as it is most commonly used in psychological research. The model can
be extended by including more previous time-points as predictors.

3In the literature, these scores are sometimes also referred to as factor scores.
To avoid confusion, we use the term “true scores” for the unobserved scores
on the latent variable (i.e., n;), and “factor scores” for the estimated factor
scores as proxies for the true scores (i.e., #;;). See the following section for an
explanation of how these estimated factor scores are obtained.
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Figure 1. Visualizing a latent vector autoregressive model with two latent constructs and lag one.
Note. The green arrows represent parameters of the measurement model. The blue arrows represent parameters of the structural model. Observed scores are

denoted by y, latent (true) scores by #, residuals by ¢, and innovations by w

The SM regresses the true scores at time-point ¢ on those
at the previous time-point:

N =0+ P, + @y, (2)

where 1n,, and 1,,_, refer to the Q x 1 vectors that contain
the true scores of individual i at time-point t and t— 1,
respectively. The Q x 1 vector & contains the intercepts (i.e.,
the predicted true scores if n;,_; is 0). The Q x Q matrix @
comprises the autoregressive (AR) parameters on the diag-
onal and the crossregressive (CR) parameters on the off-
diagonal.* The AR parameters indicate to which extent the
current value of a variable depends on its value at the previ-
ous measurement occasion. For example, in emotion
research the AR parameter has been conceptualized as emo-
tional inertia (Kuppens & Verduyn, 2017). A value close to
zero means that a person quickly returns to their baseline
after deviating from it, while someone with a larger coeffi-
cient will take longer (Hamaker, 2012; Jongerling et al,
2015). In contrast, CR parameters indicate to what extent a
variable predicts other variables at subsequent time-points.

“Note that the model relies on two assumptions: First, the process is assumed
to be stationary, which means that its means and (co)variances are constant
across time (Liitkepohl, 2005). Second, the distance between all measurement
occasions is assumed to be equal, for example one measurement every
evening at 8pm.

For instance, a negative CR parameter may indicate that a
high positive affect value predicts a low negative affect value
at the next measurement occasion.

The AR and CR parameters thus pertain to the part of
the current observation that is carried over from (i.e., can
be predicted by) the previous one. The part that cannot be
predicted is referred to as the innovation. The innovations
comprise all internal and external events that affect the indi-
vidual’s process but were not part of the previous measure-
ment (Hamaker, 2012). They are gathered in the Qx1
vector ®; and assumed to be distributed as MVN(0,Z),
where Z indicates the innovation (co)variance matrix. Note
that the innovations ®; affect the true scores m; and are
thus carried over to the next observations through the AR
and CR parameters. On the other hand, the measurement
error g;; affects the scores on the items and is thus not car-
ried over. This is the single characteristic that distinguishes
measurement error from innovations (Schuurman &
Hamaker, 2019; Schuurman et al., 2015). For example, walk-
ing in the rain on the way to work affects an individual’s
overall mood, and the effect of this innovation persists at
subsequent measurement occasions (with the strength of the
carry-over being determined by the AR and CR parameters).
In contrast, erroneously choosing value “6” over “5” on a
mobile phone screen due to sunlight glare is error that will
not propagate forward.
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2.3. Estimating the Latent Vector Autoregressive Model
in a Stepwise Manner

A popular approach among applied researchers is to first
estimate the parameters of the MM, then compute factor
scores as proxies of the true latent variable scores, and
finally use the factor scores to estimate the SM. However,
this approach has been shown to lead to biased regression
parameters, because the (co)variances of the estimated factor
scores (X;) are not equal to the (co)variances of the latent
variables (X,) (Devlieger et al., 2016; Devlieger & Rosseel,
2017). The reason for this is that there is an inherent uncer-
tainty in the factor score estimates, which arises from meas-
urement error in the observed variables (Devlieger et al.,
2016; Grice, 2001). This uncertainty increases when the
number of items measuring a construct is small or when the
factor loadings are small relative to the unique item varian-
ces (i.e., low reliability; Acito & Anderson, 1986). To avoid
biased estimates of the AR and CR parameters, this uncer-
tainty needs to be accounted for, which is the primary
objective of 3S-LVAR. Its three steps will now be described
in detail.

2.3.1. Step 1: Estimating the Measurement Model

In the first step, the MM (see Equation (1)) is evaluated
with confirmatory factor analysis. The model parameters
(intercepts, factor loadings, factor variances, and residual
variances) are estimated using Maximum Likelihood esti-
mation (Raykov & Marcoulides, 2006). Each of the Q
constructs is evaluated separately to improve the robust-
ness against misspecifications in the MM (see the
“measurement blocks” in SAM; Rosseel & Loh, 2022).
Note that in ILD, researchers usually try to obtain the
average within-person factor structure. However, since 3S-
LVAR uses regular rather than multilevel factor analysis,
the resulting factor structure could be a mixture of
within- and between-person factor structures (Hamaker
et al, 2017). To avoid this potential conflation without
switching to multilevel modeling, researchers should apply
regular factor analysis to person-mean centered data
because this type of centering removes any between-per-
son variation (Bolger & Laurenceau, 2013). However, cen-
tering on the observed means creates a correlation
between the predictors (i.e., m;,_,) and the error terms,
leading to an underestimation of the AR parameters
(Nickell’s bias; Nickell, 1981). Latent-mean centering
(Asparouhov & Muthén, 2018) avoids this bias by
accounting for the error in the sample mean estimates
and is thus recommended. It is also possible to approxi-
mate this bias and correct for it, as we propose in Online
Supplemental Material OSM-B. Further note that standard
factor analysis is used, implying that all observations are
treated as independent (e.g., 30 subjects with 50 observa-
tions each are treated as 1500 independent observations).
Although the point estimates of the MM parameters are
still unbiased when the temporal dependence of observa-
tions is ignored (Molenaar & Nesselroade, 2009), it is

essential to use cluster-robust SEs that account for these
dependencies (Abadie et al., 2023).

2.3.2. Step 2: Obtaining Factor Scores
In the second step, we compute the (predicted) factor scores
1,; with

Ny = A(Y; — 1), 3)

where A pertains to the factor scoring matrix and p to the
vector of indicator means. For example, in the case of
regression factor scores A is given by Skrondal and Laake,
(2001)

Ar = PAZ, (4)

where W refers to the Q x Q matrix of factor (co)variances,
X =AYA + 0O to the model-implied covariance matrix of
the indicators, and ® to the ] x ] matrix with the unique
item variances on the diagonal and (typically) zeros on the
off-diagonal.

The factor scores are used as single indicators for the
respective latent variables. To account for their uncertainty,
we fix their loadings to A* = AA and their residual varian-
ces to @ = A@A’ (Vermunt, 2024). Under this specifica-
tion, the model-implied variances of the factor scores equal
their observed values. A convenient feature of regression
factor scores is that 7»2 for a single factor g equals the
model-based reliability Py which in turn is equal to the
ratio of the variance of the factor scores to the total factor
variance Y, (which was estimated in step 1). Moreover, 9;
can be computed with pq(l - pq> (Vermunt, 2024).

2.3.3. Step 3: Estimating the Structural Model

In the third step, the parameters of the SM (see Equation 2)
are estimated by regressing m;, on m,_;, using the factor
scores 1);; and 1;,_, as single indicators with fixed loadings
A" and residual variances ®*. To obtain 7;_,, lagged ver-
sions of the factor score variables are created by duplicating
the data and “shifting” the values by one row (see Figure C1
in the Online Supplemental Material OSM-C).”

The model is estimated using a Maximum Likelihood
estimator (Raykov & Marcoulides, 2006). Due to the pair-
wise regression, this can be considered a pseudo Maximum
Likelihood estimation since it does not consider all data
points of an individual simultaneously. As in step 1, cluster-

°Note that this procedure leads to a difference in the values between the
lagged variables (the predictors in the VAR model) and non-lagged variables
(the outcomes). Since the scores prior to the first observation are unknown,
the values of the predictors are missing for the first observation.
Consequently, the predictors have one less known value in every individual
(for example, with 50 observations, they will have 49 values and one NA
each), and the variances will differ slightly between the lagged and non-
lagged variables of the same construct. To counteract this, it is necessary to
create an additional row for every individual in the data set, which represents
the (unobserved) data after the last measurement occasion. For this
observation, the outcomes are missing, but the predictors are not. After
adding the additional row, both the predictor and outcome variables of the
same construct include the same data, and thus their variances are equal.
Note that the Maximum Likelihood estimation in lavaan can handle missing
values.



robust SEs must be computed to account for the nested
structure of the data (Abadie et al., 2023). However, these
SEs may be inaccurate because they do not consider add-
itional variance that is carried over from the previous steps.
This occurs because the step 2 parameters A* and @ are
treated as known in step 3, despite being computed from
the estimated step 1 parameters. In the OSM-A, we describe
a standard way of computing SEs in stepwise estimation,
where (functions of) estimated parameters are treated as
fixed in later steps (Bakk et al., 2014; Gong & Samaniego,
1981).

The three steps can be implemented in standard statis-
tical software that allows estimating latent variables, such as
the R package lavaan (Rosseel, 2012). Wrapper functions
for lavaan that automate these steps are provided on
GitHub (https://github.com/mt-rein/3S-LVAR), and their
application is illustrated in Section 4.

3. Simulation Study
3.1. Problem

We conducted a simulation study to evaluate how well 3S-
LVAR performs in obtaining correct estimates of the AR
and CR parameters and the SEs. We expected 3S-LVAR to
outperform the naive stepwise approach in which factor
scores are used in a VAR model without correction for the
factor scores’ inherent uncertainty, in the following referred
to as naive factor scores (NFS). As reference points, we also
compared 3S-LVAR to stepwise estimation with the (local)
SAM approach (Rosseel & Loh, 2022), which is available in
lavaan, and simultaneous (one-step) estimation with stand-
ard SEM. The models specified and estimated in these
analyses are visualized in Figures C2 to C4 in OSM-C. For
3S-LVAR, cluster-robust SEs were computed with and with-
out the proposed correction for stepwise estimation (see
Table C1 in OSM-C). For NFS we computed cluster-robust
SEs in step 3 but did not apply the SE correction (since
researchers who would not correct the parameter estimates
for measurement error are unlikely to adjust the SEs). Since
SEM is a one-step estimation, the SE correction is not appli-
cable, but cluster-robust standard errors are calculated. The
implementation of SAM in lavaan also adjusts the SEs for
stepwise estimation (Rosseel & Loh, 2022), but does not
offer cluster-robust SEs. Note that the corrections for step-
wise estimation in 3S-LVAR and SAM are based on the
same standard procedure (Bakk et al, 2014; Gong &
Samaniego, 1981), but may be implemented differently and
thus lead to slightly different results.

Performance was rated with respect to three criteria: bias
and variability of the estimated AR and CR coefficients, and
SE recovery. Overall, we expected 3S-LVAR, SAM, and SEM
to yield unbiased estimates of the regression parameters,
while NFS was predicted to underestimate them. 3S-LVAR
was expected to underestimate the SEs before correction but
yield accurate estimates after correction. SEM was predicted
to obtain correct SE estimates. Since cluster-robust SEs were
not available for SAM, we expected these SEs to be
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underestimated. The NFS approach was also expected to
underestimate the SEs.

To evaluate the performance under different conditions,
seven aspects were manipulated. The first aspect concerned
the SM. Specifically, we manipulated the size of the AR and
CR effects. In line with earlier findings (Devlieger et al,
2016), the bias in the AR and CR estimates of NFS and the
SEs was expected to be stronger for larger effect sizes.

The second and third aspects involved the sample size.
We manipulated the number of individuals (I) and the
number of observations per individual (T). Larger sample
sizes improve the precision of estimates. Consequently, we
expected the wvariability of the parameter estimates to
decrease. Moreover, the SE recovery was expected to
improve across all four analysis methods when the overall
sample size increases (Devlieger et al., 2016).

The next three aspects introduced the presence or
absence of between-person variation in the latent means, the
innovation variances, and the regression coefficients. We
expected 3S-LVAR, SAM, and SEM to obtain unbiased
results regardless of the presence of differences in innov-
ation variances or AR and CR effects. However, we pre-
dicted to obtain biased estimates of the AR effects for these
methods in conditions with variation in the latent means
due to Nickell’s bias. We expected this bias to become
smaller when T increases (Nickell, 1981) and to be elimi-
nated by the correction described in OSM-B.® For NFS, we
expected the bias to remain the same in conditions with
and without differences in innovation variances or AR and
CR effects, and to become larger in conditions with vari-
ation in the latent means. Similarly to the other three meth-
ods, this additional bias was expected to become smaller for
larger values of T and to be eliminated with the proposed
correction.

The seventh and most crucial aspect refers to the degree
of uncertainty in the factor scores, which was manipulated
by adjusting the model-based reliabilities (p). Ignoring the
factor scores’ inherent uncertainty has been shown to bias
the estimates of regression parameters (Devlieger et al.,
2016; Devlieger & Rosseel, 2017). For low values of p, we
thus expected 3S-LVAR, SAM, and SEM to outperform NFS
in obtaining correct point estimates. This difference should
diminish and disappear as p approaches 1. Similarly, the SE
recovery was expected to improve when p increases
(Devlieger et al., 2016).

3.2. Design and Procedure

The seven manipulated aspects included the following levels:
3 .15
A5 3 )

®Note that Nickell's bias can be avoided entirely using latent-mean centering,
which will be discussed in the discussion section. However, this is beyond the
scope of this paper as this is not straightforward to implement in the SEM
framework in R, which is the focus of our article.

a. effect sizes in ®: “small effects” ® =

« s _ (6 3\
large effects” @ = <.3 .6)’
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b. person-level sample size I 25, 50;

c. observation-level sample size T: 25, 50;

d. between-person differences in latent means: no, yes;

e. between-person differences in regression coefficients:
no, yes;

f. between-person differences in innovation variance:
no, yes;

g. model-based reliability p: .5, .7., .9., .999;

The design resulted in 2x2 x 2x2 x 2x2 x 4=256
conditions. The size of the regression coefficients in ® was
chosen such that it still satisfies the stationarity requirement
in the “large effects” condition, and was then halved for the
“small effects” condition. The chosen values for I and T are
commonly found in studies that collect ILD (Can, 2020; van
Berkel et al., 2017). For example, 25 observations roughly
mirror an ESM design with four observations on seven
days. For each cell of the design, 500 data sets (128,000 in
total) were generated in R Version 4.4.1 (R Core Team,
2024) and analyzed with the four methods described above
using lavaan 0.6-18 (Rosseel, 2012). Every data set com-
prised I time series of length T with two latent constructs
measured by four items each and with equidistant observa-
tions. The simulation and analysis code can be found on
https://osf.io/d6hs7.

3.3. Results

In the following, we evaluate the performance of 3S-LVAR
and compare it to NFS, SEM, and SAM. There were no
errors or non-convergences for 3S-LVAR, NFS, and SEM,
but SAM led to an error in 58 data sets. These were re-esti-
mated once, but the error persisted. We thus removed these
data sets and report the results for 127,942 data sets below.

The results are reported separately for conditions without
and with between-person differences in the latent means
because we expected Nickell's bias in the latter.
Additionally, since the two AR and two CR parameters
showed nearly identical performance across all measures, we
report estimates for only one AR (¢,;) and one CR (¢,,)
parameter each. The results for ¢,, and ¢,; can be found in
OSM-C, Tables C3 and C4.

To examine the goodness of the regression parameter
recovery, we computed the absolute bias as the difference
between the mean of the parameter estimates within a con-
dition and the true parameter value. The relative bias scales
the absolute bias by the true parameter value. To assess the
estimates’ variability, we calculated the Root Mean Square
Error (RMSE), which is the average squared distance
between estimated and true parameter values within condi-
tions. SE recovery was assessed by dividing the average esti-
mated SE for all replications within a condition by the
standard deviation of the estimates across these replications.
A value of 1 indicates that the SE estimator performs well.
Values smaller than 1 indicate that (on average) the SEs are
underestimated, while values greater than 1 indicate that
they are overestimated. Equations for these criteria are dis-
played in OSM-C (Table C2).

3.3.1. No Differences in Latent Means
As expected, 3S-LVAR, SAM, and SEM obtained unbiased
parameter estimates across all conditions (see Table 1).”
Further in line with our expectations, NFS underestimated
the regression parameters across all conditions. This effect
was more pronounced in the AR parameters (mean absolute
and relative bias were —.07 and —0.19, respectively) than in
the CR parameters (mean absolute and relative bias of —.01
and —0.08, respectively). For NFS, larger effect sizes led to
greater absolute bias in the AR parameters as hypothesized,
but its relative bias slightly decreased. Moreover, for the CR
parameter the absolute bias remained unchanged when the
effect sizes increased, while the relative bias increased.
Increasing the number of individuals or observations did
not affect the bias for any method. It also did not reduce
the RMSE substantially, which contradicted our expecta-
tions. Finally, as expected the parameter recovery of NFS
improved when p increased until this approach performed
equally well as the other methods when p approached 1.
The SE recovery results are also displayed in Table 1.
Note that for 3S-LVAR, we report results with and without
the correction for stepwise estimation. In line with our
expectations, SEM estimated the SEs accurately in all condi-
tions (mean ratio was 1 and 1.01 for AR and CR parame-
ters, respectively). Contrary to expectation, the SEs obtained
with 3S-LVAR were recovered accurately without the SE
correction for stepwise estimation (average ratio = .99 for
both parameters), but SEs were overestimated with the cor-
rection (average ratio = 1.14 and 1.1 for AR and CR param-
eters, respectively). This overestimation was higher when p
was small. When p approached 1, the difference between
the adjusted and unadjusted SEs disappeared. Moreover,
larger effect sizes also increased the overestimation, while
neither the sample size nor between-person differences in
innovation variances or regression parameters affected the
SE recovery substantially. SAM also overestimated the SEs
(mean SE recovery was 1.09 and 1.04 for AR and CR
parameters, respectively) and showed the same pattern with
respect to the manipulated aspects. Finally, NFS also
obtained accurate estimates for the SEs of the AR parame-
ters (average ratio = .98) but underestimated those of the
CR parameters (average ratio = .96). This underestimation
is more pronounced when effect sizes are large or p is
small.

3.3.2. With Differences in Latent Means

As expected, all methods obtained biased estimates of the
AR effect in the conditions with between-person differences
in the latent means (see Table 2). This bias becomes smaller
when T increases. The proposed correction reduced the bias
and performed better as p increases, fully eliminating the
bias when p approached 1. Moreover, the CR parameter is
slightly overestimated when p is small, but underestimated
when p is large. The effects of manipulating the remaining

"Note that, in the presence of between-person differences in the innovation
variances or AR and CR effects (aspects e and f), this means that the average
or fixed effect is estimated without bias.



Table 1. Bias, root mean square error, and standard error recovery for conditions without latent mean differences.
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Parameter
AR ((Pn) CR ((P12)
Manipulated aspect Level Method AB RB RMSE SER AB RB RMSE SER
Overall 3S-LVAR 0 —0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.1)
NFS —0.07 -0.19 0.08 0.98 —0.01 —0.08 0.03 0.96
SAM 0 —0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01
Effect sizes (@) small 3S-LVAR 0 —0.01 0.04 0.98 (1.06) 0 0 0.04 0.99 (1.03)
NFS —0.05 —-0.2 0.06 0.98 —0.01 —-0.11 0.03 0.98
SAM 0 —0.01 0.04 1.04 0 0 0.04 1.01
SEM 0 0 0.04 0.99 0 0 0.04 1
large 3S-LVAR 0 0 0.04 1.01 (1.23) 0 0 0.04 1(1.16)
NFS —0.09 —0.18 0.1 0.98 —0.01 —0.04 0.03 0.94
SAM 0 0 0.04 1.14 0 0 0.04 1.06
SEM 0 0 0.04 1.02 0 0 0.04 1.03
Individuals (/) 25 3S-LVAR 0 —0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.1)
NFS —0.07 —-0.2 0.08 0.97 —0.01 —0.08 0.03 0.96
SAM 0 —0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.02
50 3S-LVAR 0 0 0.03 1(1.15) 0 0 0.03 0.99 (1.09)
NFS —0.07 -0.19 0.08 0.99 —0.01 —0.07 0.03 0.96
SAM 0 0 0.03 1.09 0 0 0.03 1.03
SEM 0 0 0.03 1.01 0 0 0.03 1.01
Observations (T) 25 3S-LVAR 0 —0.01 0.04 1(1.15) 0 0 0.04 0.99 (1.1)
NFS —0.07 -0.19 0.08 0.98 —0.01 —0.08 0.03 0.96
SAM 0 —0.01 0.04 1.1 0 0 0.04 1.04
SEM 0 0 0.04 1.01 0 0 0.04 1.02
50 3S-LVAR 0 0 0.03 0.99 (1.14) 0 0 0.03 0.99 (1.09)
NFS —0.07 -0.19 0.08 0.98 —0.01 —0.07 0.03 0.96
SAM 0 0 0.03 1.08 0 0 0.03 1.03
SEM 0 0 0.03 1 0 0 0.03 1.01
Variation in ® yes 3S-LVAR 0 0 0.04 1(1.15) 0 0 0.04 0.99 (1.1)
NFS —0.07 -0.19 0.08 0.99 —0.01 —0.07 0.03 0.96
SAM 0 0 0.04 1.09 0 0 0.04 1.03
SEM 0 0 0.04 1.01 0 0 0.04 1.01
no 3S-LVAR 0 —0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.09)
NFS —0.07 —-0.2 0.08 0.98 —0.01 —0.08 0.03 0.96
SAM 0 —0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01
Variation in Z yes 3S-LVAR 0 —0.01 0.04 0.99 (1.14) 0 0 0.04 0.99 (1.1)
NFS —0.07 -0.19 0.08 0.98 —0.01 —0.08 0.03 0.96
SAM 0 —0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01
no 3S-LVAR 0 —0.01 0.04 1(1.14) 0 0 0.04 0.99 (1.09)
NFS —0.07 -0.19 0.08 0.98 —0.01 —0.07 0.03 0.96
SAM 0 —0.01 0.04 1.09 0 0 0.04 1.04
SEM 0 0 0.04 1 0 0 0.04 1.01
Reliability (p) .5 3S-LVAR 0 —0.01 0.06 1.02 (1.55) 0 0 0.06 1.01 (1.37)
NFS —0.16 —-0.43 0.16 0.98 —0.04 —0.22 0.04 0.91
SAM 0 —0.01 0.06 1.22 0 0 0.06 1.09
SEM 0 0 0.06 1.04 0 0.01 0.06 1.05
7 3S-LVAR 0 —0.01 0.04 1 (1.06) 0 0 0.04 0.99 (1.03)
NFS —0.09 —0.25 0.09 0.99 —0.01 —0.07 0.03 0.95
SAM 0 —-0.01 0.04 113 0 0 0.04 1.04
SEM 0 0 0.04 1.01 0 0 0.04 1.01
9 3S-LVAR 0 0 0.03 0.98 (0.98) 0 0 0.03 0.99 (0.99)
NFS —0.03 —0.08 0.04 0.98 0 —0.01 0.02 0.98
SAM 0 0 0.03 1.03 0 0 0.03 1.01
SEM 0 0 0.03 0.98 0 0 0.03 1
999 3S-LVAR 0 0 0.02 0.98 (0.98) 0 0 0.02 0.99 (0.99)
NFS 0 —0.01 0.02 0.98 0 0 0.02 0.99
SAM 0 0 0.02 0.98 0 0 0.02 1
SEM 0 0 0.02 0.98 0 0 0.02 0.99

Note. Numbers in brackets pertain to the standard errors that were adjusted for stepwise estimation.
AB: absolute bias; RB: relative bias; RMSE: Root Mean Square Error; SER: Standard Error Recovery; AR: autoregressive parameter (construct 1 regressed on itself);
CR: crossregressive parameter (construct 1 regressed on construct 2); 3S-LVAR: Three-Step Latent Vector Autoregression; NFS: naive factor scores; SAM: struc-

tural-after-measurement approach; SEM: structural equation modeling.

aspects were the same as in the previous section. For brev-
ity, we thus only included the overall results and those of
the aspects reliability (p) and number of observations (T) in
Table 2. The full table can be found in OSM-C, Table C5.

3.4. Conclusion

The results of the simulation study demonstrate that 3S-
LVAR obtains unbiased point estimates of the AR and CR
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Table 2. Bias and RMSE for selected conditions with latent mean differences.

Parameter
Manipulated AR (@r1) CR (@)
aspect Level Method AB RB RMSE AB RB RMSE
Overall 3S-LVAR —0.06 -0.17 0.06 0 0 0.04
3S-LVAR (adj) —0.02 —0.05 0.04
NFS -0.12 -0.32 0.12 —-0.02 -0.13 0.03
NFS (adj) —0.08 —0.2 0.08
SAM —0.06 -0.17 0.06 0 0 0.04
SAM (adj) —0.02 —0.05 0.04
SEM —-0.06 -0.17 0.06 0 0 0.04
SEM (adj) —0.02 —0.05 0.04
Observations (7) 25 3S-LVAR —-0.08 -0.23 0.08 0 0 0.05
3S-LVAR (adj) —0.02 —0.07 0.05
NFS -0.13 -0.37 0.13 —-0.03 —-0.14 0.04
NFS (adj) —0.08 —0.21 0.09
SAM —-0.08 -0.23 0.08 0 0 0.05
SAM (adj) —0.02 —0.07 0.05
SEM —0.08 -0.23 0.08 0 0.01 0.05
SEM (adj) —0.02 —0.07 0.05
50 3S-LVAR —0.04 —0.11 0.04 0 0 0.03
3S-LVAR (adj) —0.01 —0.03 0.03
NFS -0.1 -0.27 0.1 -0.02 —-0.11 0.03
NFS (adj) —0.07 —0.2 0.08
SAM —0.04 -0.11 0.04 0 0 0.03
SAM (adj) —0.01 —0.03 0.03
SEM -0.04 -0.11 0.04 0 0 0.03
SEM (adj) —0.01 —0.03 0.03
Reliability (p) 5 3S-LVAR —-0.08 -0.24 0.09 0 0 0.05
3S-LVAR (adj) —0.04 —0.12 0.07
NFS —-0.21 —0.56 0.21 —-0.05 -0.28 0.05
NFS (adj) -0.17 —0.45 0.17
SAM —-0.08 -0.24 0.09 0.01 0.07 0.06
SAM (adj) —0.04 —0.12 0.07
SEM —-0.08 —0.24 0.09 0.01 0.08 0.06
SEM (adj) —0.04 —0.12 0.07
7 3S-LVAR —0.06 -0.17 0.07 0 0.01 0.04
3S-LVAR (adj) —0.02 —0.05 0.04
NFS -0.14 -0.38 0.14 —-0.02 —-0.13 0.03
NFS (adj) —0.1 —0.26 0.1
SAM —0.06 -0.17 0.07 0 0.01 0.04
SAM (adj) —0.02 —0.05 0.04
SEM —-0.06 -0.17 0.06 0 0.01 0.04
SEM (adj) —0.02 —0.05 0.04
9 3S-LVAR —-0.05 -0.14 0.05 —-0.01 —-0.03 0.03
3S-LVAR (adj) —0.01 —0.02 0.03
NFS -0.07 —-0.21 0.07 —-0.01 —0.05 0.03
NFS (adj) —0.03 —0.09 0.04
SAM —-0.05 -0.14 0.05 —-0.01 —-0.03 0.03
SAM (adj) —0.01 —0.02 0.03
SEM —-0.05 —-0.14 0.05 —-0.01 —-0.03 0.03
SEM (adj) —0.01 —0.02 0.03
999 3S-LVAR —0.04 -0.13 0.05 —-0.01 —0.04 0.03
3S-LVAR (adj) 0 0 0.03
NFS —-0.05 -0.14 0.05 —-0.01 —0.04 0.03
NFS (adj) —0.01 —0.01 0.03
SAM —0.04 -0.13 0.05 —-0.01 —0.04 0.03
SAM (adj) 0 0 0.03
SEM -0.04 -0.13 0.05 —-0.01 —0.04 0.03
SEM (ad)) 0 0 0.03

Note. AB: absolute bias; RB: relative bias; RMSE: Root Mean Square Error; AR: autoregressive parameter (construct 1 regressed on itself); CR: crossregressive par-
ameter (construct 1 regressed on construct 2); 3S-LVAR: Three-Step Latent Vector Autoregression; NFS: naive factor scores; SAM: structural-after-measurement

approach; SEM: structural equation modeling; (adj): adjusted for Nickell's bias.

parameters under various conditions in the absence of
between-person differences in the latent means. In the pres-
ence of such differences, the bias resulting from the
observed-mean centering can at least partially be corrected
for. Overall, the method obtains the same point estimates as
stepwise estimation with SAM, with only marginal differen-
ces to one-step SEM. Importantly, using factor scores

without correcting for their uncertainty (NFS) yields biased
parameter estimates. Interestingly, 3S-LVAR accurately esti-
mated the SEs even without adjusting them for stepwise
estimation, whereas the adjustment overestimates the SEs,
particularly for lower values of p. This means that the
adjusted SEs may be too conservative, which can reduce the
power of the hypothesis test.



4. Empirical Example

In the following, we apply the 3S-LVAR method to an
empirical data set (Nezlek & Kuppens, 2008). The data set
contains self-report measures of emotion from 68 male and
85 female undergraduates that were collected across four
weeks. Every evening, participants rated to what extent they
experienced positive emotions (e.g., to what extent they felt
enthusiastic or joyful) and negative emotions (e.g., guilty or
upset) on a 7-point Likert Scale. The participants provided
between 10 and 28 daily measures each (M =20.1,
SD =2.95, 3072 observations in total).

Specifically, we explore to what extent four constructs
related to emotional experience interact with themselves and
one another from one day to the next. Our constructs of
interest were positive activated affect, positive deactivated
affect, negative activated affect, and negative deactivated
affect.® Positive activated affect was measured with enthusias-
tic, happy, active, energetic, alert, proud, and joyful. Positive
deactivated affect was measured with calm, satisfied, and
relaxed. Negative activated affect was measured with the
items guilty, nervous, afraid, angry, ashamed, embarrassed,
upset, and disgusted. Lastly, negative deactivated affect was
measured with sluggish, sad, tired, bored, and sleepy.

The functions are available on https://github.com/mt-
rein/3S-LVAR. The repository also includes instructions on
how to install and load the functions. Before beginning with
the analysis, the user needs to ensure that the data are in
the long format and sorted by participant and time-point.
Moreover, the time interval between observations of any
individual must be roughly equivalent. Thus, missing obser-
vations (i.e., a participant did not fill in the survey when
prompted) should not be removed when cleaning the data.
Finally, the observations should be within-person mean cen-
tered to disaggregate within- and between-person effects
(Bolger & Laurenceau, 2013). A helper function for this is
also provided on GitHub.

4.1. Step 1: Estimating the Measurement Model

The first step is performed using the function stepl (),
which has three arguments. The first argument (data)
indicates the data object. The second argument (measure-
mentmodel) requires specifying the MM using the lavaan
syntax (see https://lavaan.ugent.be/tutorial). The third argu-
ment (id) provides the name of the variable that indicates
which observation belongs to which individual. The follow-
ing code performs this step for the example data:

model <- "

PA_act =~ ENTHUS + HAPPY + ACTIVE + ENERG + ALERT + PROUD + JOY
PA_deact =~ CALM+ SATIS + RELAX

NA_act =~

GUILTY + NERVE + AFRAID + ANGRY + ASHAME + EMBAR + UPSET + DISG
NA_deact =~ SLUG + SAD + TIRED + BORED + SLEEP

®These constructs refer to a circumplex model of affect with the dimensions
valence (positive/negative) and arousal (activated/deactivated, Feldman Barrett
& Russel, 1998).
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output_stepl <- stepl (data = data, measurementmodel = model,
id = “numid”)

The first command creates an object with lavaan syntax
to designate which latent construct is measured by which
variable in the data set. The operator =~ represents factor
loadings. The second command estimates the MM and saves
the output in the object output_stepl. The output com-
prises two elements: fit_stepl is the lavaan fit object
(which can be inspected with the summary () function),
and data is the data set that has been used to estimate the
model (which is needed again in step 2).

4.2, Step 2: Obtaining Factor Scores

Next, the output of stepl () is entered into the step2 ()
function to perform the second step. This function has one
argument (steploutput), as demonstrated in the follow-
ing code:

output_step2 <- step2 (steploutput = output_stepl)

The output comprises four elements: data is the original
data set with appended regression factor scores, lambda_
star and theta_star are vectors containing the diago-
nals of A" (whose values equal the reliabilities p) and @,
respectively, and fit_stepl is the lavaan fit object from
step 1.

4.3. Step 3: Estimating the Structural Model

The third step is performed using step3 (). This function
has two arguments: step2output provides the output of
step2 (), and structuralmodel specifies the SM
using lavaan syntax’. The latter is optional. If it is omitted,
the function automatically specifies a SM that includes the
auto- and crossregressive effects between all constructs. The
following code performs this step with the default VAR
model and prints the model summary:

output_step3 <- step3 (step2output = output_step2)
summary (output_step3$fit)

The output comprises three elements. First, fit_step3
is the lavaan object of estimating the SM. It can be used in
the summary () function to obtain an overview of the fit-
ted model. Second, data contains the data set used to esti-
mate the model. Note that step3 () automatically creates
lagged variables and an additional row per participant.
Third, phi 1is the matrix of estimated regression
parameters.

4.4. Standard Error Adjustment

The SEs can be adjusted to account for the stepwise proced-
ure (see OSM-A) using the function stepwiseSE ()

9See the README on GitHub for more information on how to specify the SM
manually.
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shown below. Its two arguments (step2output and
step3output) require the output of step2() and
step3 (), respectively.

adjustedSE <- stepwiseSE (step2output = output_step2,
step3output = output_step3)

The output provides three vectors that contain adjusted
values: SE, z_values, and p_values. Note that the
function is computationally expensive and can take several
minutes for models with multiple latent variables. For
instance, using the SE adjustment in our example (with four
factors) took 8minutes. Moreover, the simulation study
results indicate that the correction may overestimate the
SEs, which may reduce the power to detect existing effects.

4.5. Results

For the constructs in the example, the values of p were .86
for positive activated affect, .65 for positive deactivated affect,
.81 for negative activated affect, and .84 for negative deacti-
vated affect. Thus, positive deactivated affect had the lowest
model-based reliability, likely because it was measured by
the fewest items (Grice, 2001). Table 3 displays the point
estimates and the adjusted SEs of the AR and CR parame-
ters for 3S-LVAR and naive factor scores (i.e., using factor
scores in the VAR model without correcting for their inher-
ent uncertainty).

Using 3S-LVAR, all AR effects were significant (p < .05)
and ranged from .3 to .43, which means that emotional
experience carried over substantially from one day to the
next. However, only one out of 12 CR effects was significant:
a high score on positive activated affect predicted a high score
on negative deactivated affect on the next day (¢ = .16).
When using naive factor scores, the estimates for the
AR parameters were generally lower compared to using
3S-LVAR. This was most noticeable for positive deactivated
affect, which had the lowest reliability (p = .65): The param-
eter estimate was twice as large when using 3S-LVAR. For
the other parameters with rather high reliabilities, the differ-
ences were less pronounced. Overall, the conclusions regard-
ing the AR parameters remained the same. However, there
were was a notable difference with respect to the CR parame-
ters. The effect of positive activated affect on positive deacti-
vated affect was significant and positive when using naive
factor scores, but non-significant and negative for 3S-LVAR.
This demonstrates that neglecting to account for the factor
scores’ uncertainty can change the statistical inferences drawn
from the data.

5. Discussion

In this article, we introduced 3S-LVAR, a three-step
approach for estimating VAR models with latent variables.
The proposed method adheres as closely as possible to the
intuitive stepwise approach applied researchers use to study
dynamics in psychological constructs (i.e., first obtaining the
MM of the latent variables, then computing factor scores,

Table 3. Auto- and crossregressive effects using 3S-LVAR and naive factor
scores.

Predictor
Outcome PA act PA deact NA act NA deact
Using 3S-LVAR
PA act 0.31 (0.07)* 0.07 (0.1) 0.08 (0.05) 0.07 (0.04)
PA deact —0.01 (0.07) 0.43 (0.11)* 0.07 (0.05) 0.06 (0.04)
NA act 0.07 (0.04) —0.09 (0.07) 0.3 (0.05)* —0.02 (0.03)
NA deact 0.16 (0.06)* —0.17 (0.09) 0 (0.05) 0.36 (0.04)*
Using Naive Factor Scores
PA act 0.26 (0.03)* 0.08 (0.04) 0.05 (0.04) 0.05 (0.03)
PA deact 0.06 (0.02)* 0.21 (0.03)* 0 (0.02) 0.05 (0.02)*
NA act 0.03 (0.02) —0.05 (0.03) 0.26 (0.04)* —0.02 (0.02)
NA deact 0.06 (0.02)* —0.06 (0.04) 0.03 (0.03) 0.29 (0.03)*

Note. Numbers in brackets represent the standard errors. The auto-regressive
effects have been adjusted for Nickell's bias. PA act: positive activated affect;
PA deact: positive deactivated affect; NA act: negative activated affect; NA
deact: negative deactivated affect. *indicates a p-value lower than .05.

and finally using these in VAR modeling). In 3S-LVAR, this
approach is modified by considering the uncertainty of the
factor scores (which is caused by measurement error in the
data) in the final step. The simulation study showed that
3S-LVAR greatly outperforms the naive approach and is on
par with the SEM and SAM methods in recovering the
parameters of a bivariate dynamic process. The novel modi-
fication of the conventional stepwise approach can be seen
as a first building block that offers potential for future
extensions.

One such extension could be related to heterogeneity in
the SM. While 3S-LVAR models intra-individual variation
(i.e., within-person differences) in the constructs of interest,
it currently does not account for between-person differences
in the psychological processes (i.e., the parameters of the
SM). The proposed pairwise estimation with SEM obtains
unbiased estimates of the average AR and CR parameters
when there is between-person variation in the regression
parameters or innovation variances. However, the estimates
become biased when observed-mean centering. This bias
can be avoided with latent-mean centering, which is imple-
mented in the DSEM framework in Mplus (Asparouhov &
Muthén, 2018). In R, latent-mean centering can be achieved
by including a random intercept in the model. This is theor-
etically possible in SEM (Usami et al., 2019) but the estima-
tion becomes computationally expensive for models with
many time-points, as the model-implied covariance matrix
grows quadratically with the number of time points. A bet-
ter alternative is to use State Space Modeling, which is a
latent variable model that is specifically designed to incorp-
orate dynamics (Hunter, 2017).

Furthermore, 3S-LVAR could be extended to model het-
erogeneity in AR and CR parameters or innovation varian-
ces instead of simply estimating an average effect: First,
covariates can be used to find between-group differences
(e.g., whether an intervention and a control group differ in
their emotional inertia). Second, with multi-level modeling
the parameters can be allowed to vary across individuals
(random effects). Third, clustering (such as mixture model-
ing) can be used to find latent classes based on the SM
parameters (i.e., groups of individuals that share similar AR
and CR effects).



Besides heterogeneity in the SM, there can also be
between-person differences in the MM (i.e., measurement
non-invariance), such as differences in the factor loadings.
Ignoring these can bias the estimates of the SM (Chen,
2008; Guenole & Brown, 2014). 3S-LVAR could consider
measurement non-invariance by estimating (partially) per-
son-or group-specific MMs in step 1 and person- or group-
specific fixed loadings A* and residual variances ®" in step
2 (see Lai et al., 2023).

Moreover, the measurement intervals are assumed to be
equally spaced (e.g., one measurement every evening at
8 pm). However, ILD are typically collected at (semi)random
time-points throughout the day (Scollon et al., 2009).
Additionally, participants are usually not prompted during
the night, leading to considerably longer night intervals than
day intervals. To account for this, 3S-LVAR could be
extended to continuous time modeling (Driver et al., 2017).

In addition, 3S-LVAR uses Maximum Likelihood estima-
tion and thus assumes that the indicator variables are con-
tinuous and normally distributed. Psychologists commonly
use categorical and/or non-normally distributed items (Cain
et al., 2017). However, with a sufficient number of response
options (e.g., five or more) these variables can be treated as
continuous if the non-normality is not too severe (Norman,
2010). In addition, 3S-LVAR could be extended to use item
response theory instead of confirmatory factor analysis in
the first step (Lai & Hsiao, 2022).

Lastly, contrary to our expectations the results of the
simulation study revealed that the proposed SE correction
for 3S-LVAR overestimated the sampling variance of the AR
and CR parameters (i.e., the SEs may be overcorrected) for
small or medium values of p. The uncorrected SEs were
accurate and similar to those obtained by one-step SEM in
all conditions. SAM (which uses a correction based on the
same standard procedure) also overestimated the SEs. At
least in the conditions explored in the current article’s simu-
lation study, using cluster-robust SEs in steps 1 and 3 was
sufficient to obtain accurate SEs. Bakk et al. (2014) also
found that correcting for stepwise estimation is not always
necessary and may lead to overly conservative SEs.
However, it is important to be cognizant of this adjustment.
Researchers analyzing ILD may not be concerned about the
loss of power from overly conservative SEs due to the typic-
ally large sample sizes. They may thus prefer to use the cor-
rection for a more conservative approach.
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