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ABSTRACT 
Heterogeneity of variance is more than a statistical nuisance when variance parameters are of substan
tial interest. In multilevel modeling (e.g. students within classes), for instance, the inclusion of discrete 
variables at the between-cluster level (e.g. school type) may lead to the detection of differences 
between variances at the within-cluster level (e.g. students’ performance in a test). The resulting het
erogeneous variances (e.g. lower variance for students at high schools compared to grammar schools) 
have the potential to inform research and practice (e.g. on educational effectiveness). Along the lines 
of ‘people are variables too’, we demonstrate how the single-level formulation of multilevel structural 
equation models, the wide format approach (Barendse & Rosseel, 2020; Mehta & Neale, 2005), can be 
used in combination with multigroup modeling in order to obtain heterogeneous variance estimates. 
We provide evidence for the proposed WFmultigroup approaches’ accuracy by means of a simulation 
study and showcase its application with an empirical illustration with the lavaan package in R.
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Homogeneity of variances is a standard assumption in 
multilevel analysis. When disentangling within-cluster (e.g., 
student) and between-cluster (e.g., class) effects, it is 
assumed that within-cluster (residual) variances are equal 
across clusters, for instance, that variability of students’ per
formance in a test is equal across classes. However, we may 
think of multiple scenarios where the homogeneity assump
tion is likely to be violated. For example, the variability of 
student’s performance in a test might be contingent on the 
type of school they attend. The performance of students 
from high schools might be less variable than that of stu
dents from grammar schools. Indeed, empirical evidence 
suggests that heterogeneity of variance is a frequently 
observed phenomenon (Goldstein, 2005). Keselman et al. 
(1998) reviewed articles from prominent educational and 
behavioral science journals and reported a median variance 
ratio (VR) of 2.25. In other words, the group with the lar
gest variance (e.g., grammar schools) showed variability 
more than twice the size of the group with the smallest vari
ance (e.g., high schools). Nevertheless, a recent evaluation of 
reporting practice in multilevel research (Luo et al., 2021) 
showed that only 4:5% of studies checked the homogeneity 
assumption. The heterogeneity of variances appears to be 
less methodologically considered than empirically observed.

Whether heterogeneity of variances is considered a nui
sance or an avenue depends on the research focus. Evidence 
suggests that unaccounted heterogeneity biases standard 
errors but not point estimates (Huang et al., 2023; 

Korendijk et al., 2008; Rosopa et al., 2019). Thus, if one is 
merely interested in means (e.g., of heterogeneous varian
ces), then the standard post-hoc procedure is to correct the 
standard errors. This can be done, for example, by using 
robust standard errors (see Maas & Hox, 2004), resampling 
techniques (e.g., Zitzmann et al., 2023; see also Zitzmann 
et al., 2024), or by applying a non-linear transformation to 
the dependent variable (e.g., Hodges, 1998). If one is plan
ning a study where one expects variances to be heteroge
neous, calculating adequate sample sizes for the 
heterogeneous populations a priori is suggested (Candel & 
van Breukelen, 2015).

On the other hand, heterogeneous variance components 
might be of substantive interest. Analysing heterogeneous 
within-cluster (co)variances in students’ performance can 
reveal differences in teaching effectiveness or curriculum 
impact within schools. These differences in variability might 
offer a valuable increment to mean tendencies alone (i.e., 
the mean performance of students from high schools and 
grammar schools). For instance, Raudenbush and Bryk 
(1987) found that catholic schools had somewhat smaller 
variability than public schools in math achievement. This 
finding may help limit potential variables that give rise to 
differential variances in math achievement by exploring in 
which variables the two school types differ. To quantify the 
heterogeneous within-cluster variances within the within- 
between variance decomposition that takes place in multi
level modeling in common statistical software, for instance, 
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Mplus (L. Muth�en & Muth�en, 1998–2017) and lavaan 
(Rosseel, 2012), Hedeker and Mermelstein (2007) and West 
et al. (2022) suggested to calculate group-specific Intraclass 
Correlations (ICCs are defined as the proportion of 
between-cluster variance out of the sum of the between- 
and within-cluster variances, i.e., the total variance; Hox 
et al., 2017), for instance, one ICC for high schools and one 
for grammar schools. In Mplus, for instance, these are given 
in the summary of the data. These may facilitate to decide 
whether certain between-cluster variables (e.g., school type) 
are relevant for the variability of a given outcome (e.g., stu
dents’ test performance) or not.

To model heterogeneous variances, advanced statistical 
techniques have to be employed. Broadly speaking, there 
are two main frameworks that are suited to model hetero
geneous variances for multilevel data: hierarchical models 
with heterogeneous variances and multilevel multigroup 
SEM. Hierarchical models with heterogeneous variances 
(also known as HET or dispersion models; e.g., 
Raudenbush & Bryk, 1987) are prominent in longitudinal 
research where inter-individual differences in intra-individ
ual change is the subject of investigation. They are avail
able in the nlme package in R. However, their main 
disadvantage is that one can neither model more than one 
dependent variable simultaneously nor measurement error. 
Multilevel multigroup SEMs (ML MG SEM; e.g., B. 
Muth�en, 1997), however, are able to do so. Generally, 
multigroup models are frequently employed to test for 
measurement invariance in confirmatory factor analysis 
(CFA) across groups (e.g., school type, countries, measure
ment occasions), which is a prerequisite for cross-group 
comparisons such as group mean differences. When the 
data is hierarchical (e.g., schools in different countries, 
classes on multiple measurement occasions in a cohort 
study), then ML MG SEM allows to account for both the 
multigroup and multilevel nature. While these modeling 
approaches are available in common statistical software, 
we demonstrate along the lines of ‘people are variables 
too’ how they can be estimated in a single-level framework 
using the wide format approach (Barendse & Rosseel, 
2020; Mehta & Neale, 2005; Walther, Hecht, Nagengast, 
et al., 2024). First, one needs to reformulate the multilevel 
SEM as single-level restricted confirmatory factor analysis 
(CFA) in the wide format (WF) approach. Then, one 
applies the multigroup feature to estimate group-specific 
(within-cluster) variances.

The present article has two objectives. Firstly, we will 
introduce our proposed WFmultigroup approach, which 
develops the notion of multilevel multigroup SEM as a sin
gle-level restricted CFA for multiple groups, and illustrates 
how to implement it in the lavaan package in R. Secondly, 
we will make the point that multilevel multigroup SEMs, 
which are usually used for testing for measurement invari
ance across groups, can also be used to model heteroge
neous within-cluster (co)variances of manifest variables that 
are stratified by discrete between-cluster variables. The pro
posed WFmultigroup approach is supported by a simulation 
study and its application is demonstrated through an 

empirical example. The restrictions and limitations of the 
method will be addressed in the discussion.

1. The WFmultigroup Approach

1.1. Background

By the beginning of the century, hierarchical modeling and 
structural equation modeling, which have been thought of 
as two non-overlapping traditions for a considerable time, 
have been shown to be equivalent (e.g., Bauer, 2003; Rovine 
& Molenaar, 2000). Subsequently, Barendse and Rosseel 
(2020) and Mehta and Neale (2005) demonstrated that a 
multilevel structural equation can be fit by means of a sin
gle-level measurement model (CFA). A crucial feature of 
this reformulation is the data format. In the standard multi
level SEM, the data matrix is used in long format (LF), 
whereas in the single-level approach, the wide format (WF) 
data matrix is subjected. These LF and WF approaches to 
multilevel SEM have been shown to be empirically equiva
lent under various conditions in terms of estimation accur
acy (Barendse & Rosseel, 2020; Mehta & Neale, 2005; 
Walther, Hecht, Nagengast, et al., 2024).

We were motivated by similar considerations about 
equality: when a multilevel SEM can be estimated as a sin
gle-level CFA, then a multilevel multigroup SEM may be 
estimated as a single-level multigroup CFA. Therefore, we 
suggest extending the WF approach by multigroup modeling 
and altering the model specification to allow for group-spe
cific variances. In the remainder of this article, we will illus
trate how a model with heterogeneous within-cluster 
(co)variances stratified by a between-cluster predictor can 
be fitted. However, models with different assumptions on 
heterogeneity at both levels as stratified by a between-cluster 
variable can be estimated with the proposed approach as 
well (see the complete code of the empirical illustration in 
Appendix B).

1.2. How It Works

Figure 1 illustrates the differences of the standard LF, the 
WF, and the proposed WFmultigroup approach to multi
level SEM. The depicted minimal example data set consists 
of ten clusters (g ¼ 10) with two units in each cluster 
(n ¼ 2). For every unit we observe two continuous variables 
(p ¼ 2), x1 and x2, which are aggregated in order to obtain 
between-cluster variables. There is one further discrete 
between-cluster variable with two levels (k ¼ 2) that serves 
as the grouping variable.

In Panel A, it can be seen that the WF approaches, in 
contrast to the standard LF approach, split the p observed 
variables into p � n variables in the data frame (“people are 
variables too”, Mehta & Neale, 2005, p. 1). For instance, x1:1 
is the observed variable x1 for every 1st unit in the cluster 
(i ¼ 1). Thus, rows in the WF data matrix correspond to 
the numbers of clusters (g ¼ 10; level-2 units) whereas in 
the LF data matrix, they correspond to the total number of 
units in all clusters (g � n ¼ N ¼ 20; level-1 units).
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From the data matrices, the respective sample covariance 
matrices are estimated (see Panel B). Their dimensions are 
obtained from the number of respective “observed” variables 
(i.e., columns of the data matrix): p� p in the LF approach, 
and ðp � nÞ � ðp � nÞ in the WF approaches. The standard 
WF approach has one sample covariance matrix, whereas 
the WFmultigroup approach has two (i.e., one per group). 
Hence, the sample size for each sample covariance matrix 
depends on the number of clusters and cluster sizes in each 
group. In our example data set, there are balanced numbers 
of clusters and cluster sizes. Thus, each matrix is estimated 
by five clusters with two units each (g ¼ 5 and n ¼ 2) 
whereas the one WF sample covariance matrix is estimated 
by the full ten clusters with two units each (g ¼ 10 
and n ¼ 2).

Regarding the model specification in Panel C, the WF 
approaches in contrast to the standard LF approach set equality 
constrains across the n splits of each observed variable p. 
Therewith, the within-cluster (co)variances of all i units within 
a cluster are set to be homogeneous. The WFmultigroup 

approach relaxes these equality constrains by applying con
strains only for each of the k groups. Thereby, within-cluster 
(co)variances of all i units within a cluster are set to be homo
geneous for each observed variable only per group. Put differ
ently, within-cluster (co)variances are heterogeneous by group. 
The between-cluster means, which are modelled as latent factor 
intercepts, are also allowed to differ by group. In contrast, 
between-cluster (co)variances are set to be equal across groups, 
because we only assume the within-cluster (co)variances to be 
heterogeneous (though we could model the between-cluster 
(co)variances to be heterogeneous as well with this approach). 
Thus, one simply fits a multilevel SEM for each group with cer
tain equality constrains across groups, which can be conceived 
as a multilevel multigroup SEM.

1.3. Sample Size Requirements

Whilst the WFmultigroup approach offers multiple possibil
ities for estimating parameters constrained and freely across 

Figure 1. The LF, WF, and WF multigroup approaches. Data set: the data collected in a given setting. Data Matrix: the data set in matrix form, where columns refer 
to observed variables and rows to observed units. Data Format: one of two possible formats of the data matrix, long format (LF) or wide format (WF). In WF, every 
observed variable p is split for every unit in the cluster (n). For instance, x1:1 is x1 for every first unit in each cluster. Sample Covariance Matrix: a symmetric matrix 
that contains (co)variances of the observed variables. Model Specification: representation of the model to be estimated, here, this is a bivariate two-level intercept- 
only model. Between-cluster parameter estimates are located above the dashed line; within-cluster parameter estimates are located below. At each level, identical 
parameter estimates indicate equality constrains. The example data set has g ¼ 10 clusters �a n ¼ 2 units, and p ¼ 2 observed variables. Note that only the first 
four clusters are depicted. The R code to generate the data and models is available on Github (https://github.com/demianJK/WFmultigroup). The figure is adapted 
from “Shrinking Small Sample Problems in Multilevel Structural Equation Modeling via Regularization of the Sample Covariance Matrix” by J.-K. Walther, M. Hecht, 
and S. Zitzmann, 2024, Structural Equation Modeling Journal, 1–20. https://doi.org/10.1080/10705511.2024.2380919.
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groups and levels, it has one noteworthy limitation due to 
its data format, which concerns sample size and conver
gence. The way the traditional maximum likelihood estima
tor (MLE) is implemented in lavaan requires a positive 
definite sample covariance matrix (Hamaker et al., 2003; 
Singer, 2010; Van Montfort et al., 2018; Voelkle et al., 2012; 
Walther, Hecht, Nagengast, et al., 2024), which, amongst 
others, necessitates that the supplied data matrix has just as 
many or less columns than rows. In the standard WF 
approach, cols � rows translates to ðp � nÞ � g (Walther, 
Hecht, Nagengast, et al., 2024). However, as multiple sample 
covariance matrices are estimated in the WFmultigroup 
approach (i.e., one per group), ðp � nkÞ � gk has to hold for 
each group. When the number of clusters and cluster sizes 
differ substantially across groups, traditional MLE, which is 
based on the sample covariance matrix, might not be able to 
fit the model. However, one might use full information 
maximum likelihood (FIML) estimation, which uses the raw 
data instead and, hence, circumvents the problem (Hamaker 
et al., 2003; Trendafilov & Unkel, 2011; Unkel & 
Trendafilov, 2010; Voelkle et al., 2012). However, when the 
amount of missing data is too large, estimation might fail as 
well. One way to deal with both problems is multiple imput
ation, which we apply in the empirical example. However, 
before that, we will describe results from a small simulation 
study (without missing values) in which the performance of 
the proposed WFmultigroup approach was examined.

2. Simulation Study

We conducted a simulation study to investigate whether the 
proposed WFmultigroup approach is accurate and unbiased 
in estimating heterogeneous within-cluster (co)variance 
structures which are grouped by discrete between-cluster 
variables. Empirical equivalence of WFmultigroup with the 
“genuine” ML MG SEM for all homogeneous, heterogeneous 
between-cluster (co)variances and heterogeneous within- 
and between-cluster (co)variances models is demonstrated 
in the complete code for the empirical illustration in 
Appendix B.

2.1. Method

The computations were conducted on an AMD Ryzen 
Threadripper PRO 3975WX 32-cores (3.50 GHz) CPU on a 
Windows 10 (Version 20H2) platform utilising R version 
4.4.0 (R Core Team, 2024), along with several R packages: 
DescTools version 0.99.50 (Signorell et al., 2024), dplyr ver
sion 1.1.4 (Wickham et al., 2023), ggplot2 version 3.5.1 
(Wickham, Chang, et al., 2024), lavaan version 0.6-17 
(Rosseel et al., 2024), patchwork version 1.2.0 (Pedersen, 
2024), tidyr version 1.3.1 (Wickham, Vaughan et al., 2024). 
The R code for data generation, analysis, and figures is 
available at https://github.com/demianJK/WFmultigroup.

2.1.1. Data Generation
We varied the number of clusters (g ¼ 200, 500, 1000), the 
cluster size (n ¼ 2, 10, 30), the variance ratio (VR ¼ 2, 5), 

and the variance at the between-cluster level 
(r2

B ¼ 0:05, 0:25). This resulted in 2� 2� 3� 3 ¼ 36 simu
lation conditions overall. The number of observed variables 
was fixed to p ¼ 2, and two groups, as indicated by a dis
crete between-cluster variable (k ¼ 2), were considered. The 
magnitudes of the between-cluster variances were informed 
by the lower and upper limits of frequently observed ICCs 
in the educational and behavioral sciences (Adams et al., 
2004; Gulliford et al., 1999). In the first group, the total 
variance was set to 1, and the within-cluster variance was 
computed by r2

W 1 ¼ 1 − r2
B (and thus, r2

B ¼ ICC1). The 
within-cluster variance in the second group was computed 
by dividing through the VR. Note that the between-cluster 
(co)variances were equal across both groups as we only 
assumed the within-cluster (co)variances to be heteroge
neous. The covariances at each level were determined by 
multiplying the variance with the fixed correlation of q ¼

0:3 which reflects a large correlation (Gignac & Szodorai, 
2016).

2.1.2 Data Analysis
We considered only one model, a bivariate two-level inter
cept-only model with heterogeneous within-cluster (co)va
riances, which we estimated as a multigroup single-level 
CFA with lavaan. As Hedeker and Mermelstein (2007) and 
West et al. (2022) suggested, we computed group-specific 
ICCs by ICC1 ¼ r2

B=ðr
2
B þ r2

W 1Þ and ICC2 ¼ r2
B=ðr

2
B þ

r2
W 2Þ for each variable.

2.1.3. Evaluation Criteria
We thoroughly investigated the estimation accuracy of the 
(co)variance structure in terms of the relative root mean 

squared error (RMSE), 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðĥ − hÞ

2
q

=h � 100%, which is a 
measure that combines both bias and variance of an estima
tor, and the relative bias, 

P
ðĥ − hÞ=h � 100%: Convergence 

and coverage rates were also reported briefly. A model was 
considered converged if the optimizer indicated that it had 
found a solution. Convergence rates represent the percent
age of converged models out of all estimated models. 
Coverage rates indicate the percentage of confidence inter
vals that encompass the population parameter. Note that for 
estimation accuracy and coverage rates, we considered only 
(co)variances (but not means) of the intercept-only models.

2.2. Results

Under every simulation condition, all models converged. 
Moreover, all coverage rates fell between the acceptable 
range of 91% to 98% (L. K. Muth�en & Muth�en, 2002). The 
more interesting results for relative RMSE and bias are 
depicted in Figure 2.

At the between-cluster level, previous findings could be 
replicated: smaller numbers of clusters, smaller cluster 
sizes, and smaller between-cluster variances (and thus, 
smaller ICCs as well) were detrimental for overall accuracy 
(see also L€udtke et al., 2011; Meuleman & Billiet, 2009; 

900



Stegmueller, 2013; Walther, Hecht, Nagengast, et al., 2024; 
Zitzmann, 2018; Zitzmann et al., 2016). Combined, these 
lead to a relative RMSE of up to 150%, even when the 
minimum number of clusters was moderately large 
(g ¼ 200). Increasing the cluster size moderately (from 
n ¼ 2 to n ¼ 10) reduced the relative RMSE by up to 
40%: Smaller cluster sizes and smaller between-cluster var
iances were associated with larger negative biases. 
However, all sample sizes resulted in biases within the 
acceptable limit of j10%j (L. K. Muth�en & Muth�en, 2002). 

It is interesting to note that larger VRs led to more accur
ate and less biased between-cluster parameter estimates, 
especially when the cluster size was small. Drawing on the 
earlier example setting, when g ¼ 200 and n ¼ 2, when 
VR ¼ 2, the relative RMSE was 150%, whereas when 
VR ¼ 5, it dropped to half. We hypothesize that this 
might be related to the factor analytic modeling: In the 
single-level multigroup CFA framework, the between-clus
ter (co)variances are estimated as a common factor (co)va
riances that are equality constrained across groups. When 

Figure 2. Estimation accuracy of between-cluster, within-cluster, and ICC parameter estimates. VR¼ variance ratio. Only (co)variance parameter estimates are con
sidered. In a bivariate two-level intercept-only model with heterogeneous within-cluster (co)variances for two groups, this comprises three parameter estimates at 
the between-cluster level (i.e. two variances and one covariance, �HB), six parameter estimates at the within-cluster level (i.e. two variances and one covariance for 
both groups, �HW ), and four ICC parameter estimates (i.e. one for each group per variable, �q).
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the VR was larger, the ratio of common to unique vari
ance of the indicators (i.e., the p � n “observed” variables), 
which might be though of as their ICCs (common as 
between-cluster and unique as within-cluster variances), 
got larger by design in the second group. Thus, the 
amount of communality of the indicators across both 
groups increased. Especially when the number of indica
tors was small (i.e., small cluster sizes n), a larger VR 
could have compensated for its negative effect. This argu
mentation is in line with evidence suggesting that smaller 
common factor variances (i.e., commonalities) are more 
strongly influenced by sample size when it comes to factor 
recovery (MacCallum et al., 1999).

At the within-cluster level, smaller numbers of clusters 
and smaller cluster sizes were related to less accurate esti
mates as well, but the relative RMSE was only up to 20% at 
worst. Bias was close to zero. This replicates earlier findings 
suggesting that parameter estimates of between-cluster varia
bles are less accurate and more biased than those of within- 
cluster parameter estimates (e.g., Depaoli & Clifton, 2015; 
Finch & French, 2011; Hox & Maas, 2001; Hox et al., 2010; 
L€udtke et al., 2011; Muthen & Satorra, 1995; Zitzmann 
et al., 2016). There was no effect of the VR on the accuracy 
of the within-cluster parameter estimates.

The ICC estimates, as derived from the between- and 
within-cluster variance estimates, inherited both their 
strengths and weaknesses: smaller numbers of clusters, 
smaller cluster sizes, smaller between-cluster variances, and 
smaller VRs led to less accurate and more negatively biased 
estimates (as the between-cluster parameter estimates) but 
the magnitude of inaccuracy and bias was less strong (as for 
the within-cluster parameter estimates).

Overall, the proposed WFmultigroup approach lead to 
accurate and almost unbiased estimates and converging 
models with accurate standard errors. We recommend using 
at least a moderate number of clusters and cluster sizes to 
guarantee good accuracy and unbiasedness. In the case of a 
bivariate intercept-only model with two groups with bal
anced numbers of clusters and cluster sizes, a sample of g ¼
200 and n ¼ 10, or more precisely, g ¼ 100 and n ¼ 10 for 
every group, satisfies this requirement.

3. An Empirical Illustration

In the following, we will work through a step-by-step guide 
on how to estimate a multilevel multigroup SEM as a sin
gle-level restricted multigroup CFA in lavaan using an 
empirical illustration. Specifically, we will investigate the 
heterogeneity of (co)variances of two observed variables, 
creative activities at school and growth mindset, in Albania 
and Ireland (i.e., the between-cluster variable is country). 
The analysis of their (co)variance structures can inform us 
about differences in the countries which one could subse
quently explore to gain insight into variables that influence 
the variability of these outcomes. We will fit a model which 
assumes heterogeneity of within-cluster (co)variances (and 
homogeneity of between-cluster (co)variances) across groups 
in the single-level multigroup framework (WFmultigroup). 

In the main body of this article, only the code for the model 
specification is presented. The code for all other prior steps, 
such as data subsetting, inspection of missing data, and 
multiple imputation, as well as model specifications of mod
els with homogeneous within- and between-cluster (co)va
riances, heterogeneous between-cluster (co)variances, and 
heterogeneous within- and between-cluster (co)variances 
with the WFmultigroup approach and the “genuine” ML 
MG SEM approach in lavaan can be found in the complete 
code in Appendix B. We draw on an open access data set of 
the Programme for International Assessment of Student 
Assessment (PISA) from 2022 which can be downloaded 
from https://www.oecd.org/pisa/data/2022database/. Note 
that the data set and variables were chosen by convenience 
to provide readers with a reproducible example and illus
trate the WFmultigroup approach and thus, the investigated 
research question is not of substantive interest.

All computations of the empirical illustration were run 
on a Macbook Pro (2021) with an M1 Pro CPU on the 
Sonoma 14.5 platform utilising R version 4.4.0 (R Core 
Team, 2024) with the following packages: dplyr version 1.1.4 
(Wickham et al., 2023), foreign version 0.8-87 (R Core 
Team et al., 2024), ggplot2 version 3.5.1 (Wickham, Chang, 
et al., 2024), huxtable version 5.5.6 (Hugh-Jones, 2022), lav
aan version 0.6-18 (Rosseel et al., 2024), lme4 version 1.1- 
35.5 (Bates et al., 2024), MICE version 3.16.0 (Buuren et al., 
2023), naniar version 1.1.0 (Tierney et al., 2024), patchwork 
version 1.2.0 (Pedersen, 2024), psych version 2.4.6.26 
(Revelle, 2024), and tidyr version 1.3.1 (Wickham, Vaughan 
et al., 2024).

3.1. Data Set

3.1.1. The Sample
The complete PISA data set was collected within a stratified 
two-stage sampling process. Firstly, schools in which 15- 
year-old students (i.e., the target level-1 units) may be 
enrolled, were sampled. The minimum number of schools 
(i.e., level-2 units; clusters) for each country were 150. 
Secondly, students within these schools were sampled. The 
two observed variables that we consider are not part of the 
PISA test but the background information.

For our empirical illustration, we selected two countries 
from the pool of included countries: Albania and Ireland. 
The choice fell on them because both variables had a large 
VR in these countries and where thus well suited for the 
kind of analysis we want to illustrate. The total subsample 
consists of g ¼ 444 schools with a total of N ¼ 11, 698 stu
dents. The number of schools (i.e., clusters) and students in 
each school (i.e., cluster sizes) for both countries are 
depicted in Figure 3. As can be seen in panel A, 274 schools 
are from Albania and 170 schools from Ireland, with a total 
of NAlbania ¼ 5, 569 and NIreland ¼ 6, 129 students. 
Unfortunately, however, the school sizes differ substantially 
from nmin ¼ 1 to nmax ¼ 45 with stark differences across 
countries (see Panel B). This will introduce a considerable 
amount of missing values later on when reformatting LF to 
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WF, where balanced cluster sizes are required, and thus, col
umns change from p to p � nmax:

3.1.2. The Observed Variables
The two variables that we included in our analysis are cre
ative activities at school (CREATAS) and growth mindset 
(GROSAGR). According to the codebook and the plotted 
data (see Figure 4), they are continuous, and even if their 
distributions deviate from normality, see Panel A and B, the 
large sample sizes should warrant inferential conclusions, 
even in the presence of relatively large amounts of missing 
data (28% and 20%).

By plotting the raw data (Panel A to C) and the cluster 
means (Panel D to F) per group, one gets valuable informa
tion on potential heterogeneity of (co)variances. In Panel A 
and B, the univariate distributions of creative activities at 

school and growth mindset are depicted. The variability of 
each variable differs group-wise. The same holds true for 
the coherence of both variables in Panel C. This suggests 
that (at least) the within-cluster (co)variances are heteroge
neous. When inspecting the distributions of the cluster 
means, the univariate distributions in Panel D and E and 
the bivariate distribution in Panel F, one sees that they dif
fer group-wise as well. Taken together, this suggests that 
both the within- and the between-cluster (co)variances are 
heterogeneous. We simulated data under differing homoge
neous and heterogeneous conditions at both levels and 
examined the variability of raw data and cluster means to 
support this claim (see Figure A1 in Appendix A). When 
both the within- and between-cluster levels in both groups 
were from different populations, then a pattern of group- 
wise differing raw data and cluster means appeared. Note, 
nevertheless, that in the main body of the article, only the 

Figure 3. Number of schools and school sizes by country. Number of Schools¼ Clusters (i.e. Level-2 units); school size¼ cluster size (i.e. level-1 units students).

Figure 4. The distributions of raw data and cluster means. NCREATASðAllÞ ¼ 8, 449 (28% missings) with NCREATASðAlbaniaÞ ¼ 3, 398 (23:5% of all missings and 44:5% of 
missings in Albania) and NCREATASðIrelandÞ ¼ 5, 051 (4:5% of overall missings and 10% of missings in Ireland); NGROSAGRðAllÞ ¼ 9, 319 (20% missings) with 
NGROSAGRðAlbaniaÞ ¼ 3, 870 (19% of all missings and 58% of missings in Albania) and NGROSAGRðIrelandÞ ¼ 5, 449 (1% of all missings and 2% of missings in Ireland); num
bers refer to the LF data matrix with unbalanced cluster sizes (see Figure 3).
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model specification of the model with heterogeneous 
within-cluster (co)variances is included. For the model spe
cification of the other models, see the complete code in 
Appendix B.

We investigated the missing patterns of the data in mul
tiple ways: by plots, inferential statistics with Little (1988)’s 
test of MCAR1 for multivariate data, correlation tables, and 
with logistic multilevel models that predicted missingness. 
In sum, we found evidence that they are not MCAR but 
MAR. Missing values could be predicted by the value or 
missingness of the other variable and the country. Thus, 
missing patterns seem to be largely contingent on the data 
collection in the schools in both countries. Moreover, a con
siderable amount of missing values for each variable, given 
the stark differences in school sizes, is introduced when 
reformatting to WF (where the data matrix is g � p � nmax) 
as balanced school sizes are necessary. As Schafer (1997) 
argued, an unbalanced design can be considered a missing 
data problem. Multiple imputation has been applied to deal 
with unbalanced designs in ANOVA before (Ginkel & 
Kroonenberg, 2021). Thus, we imputed not only the 
“genuine” missing values but the missing values that had to 
be introduced by the balanced cluster sizes required for 
reformatting. We used multiple imputation by chained 
equations (MICE; Buuren & Groothuis-Oudshoorn, 2011) in 
the LF data matrix. For each variable, we specified an 
imputation model containing the other variable as predictor 
and accounting for the clustering. Imputation was done sep
arately for each country, such that we assumed homoge
neous variances within each country. In total, for Albania, 

72% of values of creative activities at school and 69% of val
ues of growth mindset, and for Ireland, 34% and 29%

of these values were imputed. Admittedly, these quantities 
are very large but the data sets used for imputation were 
considerably large as well: for Albania, NCREATASðAlbaniaÞ ¼

3, 398 and NGROSAGRðAlbaniaÞ ¼ 3, 870, and for Ireland, 
NCREATASðIreland9 ¼ 5, 051 and NGROSAGRðIrelandÞ ¼ 2, 201: The 
existent and imputed data is depicted in Figure 5. 
Moreover, sensitivity analysis revealed that the means and 
standard deviations of the existent and imputed data sets 
were very close (see Table 1). Note that we combined the 
imputed data sets and run the model estimation on this 
complete data set instead of running separate models for 
each imputed data set and pooling the results, as suggested 
by Rubin (2004) and Schafer and Olsen (1998), because our 
kind of analysis was not supported in the multiple imput
ation package MICE. After multiple imputation, the total 
sample consisted of g ¼ 444 schools with n ¼ 45 students, 
which results in a total of N ¼ 19, 980 students where 
NAlbania ¼ 12, 330 and NIreland ¼ 7, 650:

Note that because of the nature of the data – a large sample 
of heterogeneous, clustered data with unbalanced numbers of 
clusters, highly differing cluster sizes and large amounts of 
missings – empirical evidence on ways to deal with the miss
ings was sparse. While there was literature on large data sets 
with missing cases up to 99% per variable (Stuart et al., 2009), 
moderate sized clustered data (g ¼ 300, n ¼ 2 − 25; Huque 
et al., 2020), multigroup data (of randomized control trials; 
Jakobsen et al., 2017), unbalanced group sizes (Schafer, 1997), 
heterogeneous variances (with k-nearest neighbours imput
ation; Santos et al., 2022), and unbalanced group sizes 
(Schafer, 1997), no study considered all these together. Thus, 
we combined tested and untested advice in the reported way 
of dealing with the missing values. Note further that we tried 
several alternatives. Imputation in the WF data matrix did not 

Figure 5. Existent and imputed data. “All (data)” refers to N ¼ 19, 980 for each variable where NAlbania ¼ 12, 330 and NIreland ¼ 7, 650; “Existent (data)”: 
NCREATASðAlbaniaÞ ¼ 3, 398 and NCREATASðIrelandÞ ¼ 5, 051, NGROSAGRðAlbaniaÞ ¼ 3, 870 and NGROSAGRðIrelandÞ ¼ 5, 449 (but only complete case-wise existent cases are depicted); 
“Imputed (data)”: NCREATASðAlbaniaÞ ¼ 8, 932 and NCREATASðIrelandÞ ¼ 2, 599, NGROSAGRðAlbaniaÞ ¼ 8, 460 and NGROSAGRðIrelandÞ ¼ 2, 201:

1There are different kinds of missing patterns. Missing Completely at Random 
(MCAR): missings are completely independent of other variables and the 
missing value itself. Missing at random (MAR): missings are dependent on 
other variables but not on the missing itself. Missing Not at Random (MNAR): 
missings are independent of the other variables but they are not random.
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work. A joint imputation model for both countries did not 
yield plausible results. FIML estimation, doing nothing about 
the missings, or only imputing the “genuine” missing values 
(while still introducing a considerable amount of missings by 
reformatting) did not result in converging models either. In 
other contexts, however, these might be viable alternatives.

3.2. Model Specification

In the following, we will illustrate how to specify a model 
with heterogeneous (co)variances at the within-cluster level 
in the WFmultigroup approach in lavaan. There are p � n ¼
2 � 45 ¼ 90 “observed” variables in the WF data matrix 
which are related mostly by equality constrains. Writing the 
lavaan model syntax manually would take an unnecessary 
long time. Instead, we use loops for recurring relations. For 
this, we need to create a vector with the names of the 
observed variables (‘varName’), and one object that contains 
the number of observed variables ‘p’.

We will first create the model syntax for the within-cluster 
part of the model. The within-cluster variances are estimated as 
residual variances in a single-level CFA. Thus, we need to specify 
pn �� pn for all 90 “observed” variables. The n splits of each 
observed variable p have to be equality constrained in the WF 
approach in order to estimate the within-cluster parameters. 
This is achieved by using the same label for the variance param
eters. Because we want the within-cluster variances to differ by 
group, we have to use different labels for the parameters in both 
groups. In sum, the variances are specified in the following 
form: ‘CREATAS.1 � � c(CREATAS_albania, CREATAS_ 
ireland)�CREATAS.10 where, for instance, ‘CREATAS_albania’ 
denotes the equality constrained variance parameter across all n 
students in a school of group 1 (i.e., Albania). The whole set of 
specifications can be done with the following loop:

A similar proceeding is required for the group- 
specific covariances, for instance, ‘CREATAS.1 �

� c(CREATAS_GROSAGR_albania, CREATAS_GROSAGR_ 
ireland) �GROSAGR.10, where, for instance, ‘CREATAS_ 
GROSAGR_albania’ is the within-cluster covariance of 
Albania, which can be created by another loop:

Next we have to set the means of the p � n “observed” 
variables to zero, as these are aggregated within-cluster vari
ables whose group-specific mean-structure is specified at the 
between-cluster level (which we will turn to later). We do 
this in the form ‘CREATAS_1� 0�10.

Now that the model syntax for the (heterogeneous) within- 
cluster parameters is complete, we can move on to those of 
the (homogeneous) between-cluster parameters. Between-clus
ter variables are modelled as latent factors by the p � n 
“observed” variables. Firstly, we have to fix the factor loadings 
to 1 as all “observed” variables contribute equally to the factor, 
‘fCREATAS ¼ � 1�CREATAS_1þ 1�CREATAS_2þ… ’.

Following, we will specify the factor variances and inter
cepts, which constitute the between-cluster variances and 
means, in the forms of ‘fCREATAS � 10 and ‘fCREATAS �

Table 1. Mean and standard deviation of existent and imputed data by country.

Creative activities at school Growth mindset

Albania Ireland Albania Ireland

Data M SD M SD M SD M SD

Existent 1.08 1.34 0.09 0.77 −0.36 1.29 0.16 0.86
Imputed 1.13 1.36 0.07 0.77 −0.33 1.31 0.16 0.87

For sample sizes, see note under Figure 6.
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� fCREATAS’, by way of example for the observed variable 
creative activities at school (‘CREATAS’). Since both parame
ters make use of the same loop, we create them in the 
same run.

Finally, the between-cluster covariance is set as 
‘fCREATAS � � fGROSAGR’ in the following way:

Because the factor (co)variances and means (i.e., 
between-cluster (co)variances and means) require relatively 
sparse code, we may set them manually in models with 
sparse observed variables. Now that we finished the model 
syntax, we can estimate the model by:

where we combined all prior code snippets to our complete 
model specification ‘model_WFmultigroup’ and apply it to the 

imputed data set ‘PISA_short_balanced_imp_WF’. The group
ing variable country is handed over to ‘group¼“CNT”’. We are 
able to set the between-cluster (co)variance structure to be 
equal across groups by group.equal¼ c(“lv.variances”, 
“lv.covariances”), and thus, we do not have to use labels for the 
(co)variance as for the within-cluster (co)variances. 
Unfortunately, there is no appropriate shorthand function par
ameter for equality constraining the manifest variables n-wise 
(i.e., the standard WF approach) per group. Thus, the within- 
cluster part of the model has to be specified in the model syn
tax (manually or by the loops we presented).

3.3. Model Parameter Estimates

In Figure 6, the model parameter estimates of the heteroge
neous within-cluster (co)variances model are depicted. The 
within-cluster variances of creative activities at school were 
1.73 in Albania and 0.57 in Ireland, and those of growth 
mindset were 1.68 in Albania and 0.74 in Ireland. In contrast 
their covariances were quite similarly close to zero: −0:02 in 
Albania and 0.04 in Ireland. Thus, overall, Albania had larger 
within-cluster variances than Ireland. These stark differences in 
variances in the heterogeneous model, VRCREATAS ¼ 3:04 and 
VRGROSAGR ¼ 2:27, also had an impact on the group-specific 
ICC parameter estimates. Albania with its larger within-cluster 
variances had smaller ICCs. Regarding creative activities at 
school, the ICC was 0.04 in Albania and 0.11 in Ireland. For 
growth mindset, estimates were 0.02 for Albania and 0.04 for 
Ireland. The differences in within-cluster (co)variances in the 
heterogeneous model, in combination with the differences in 
between-cluster means, inform us about the substantial differ
ences in the distributions of the observed variables between 
both countries. Building on this, one might scrutinize differen
ces in both countries in contextual variables such as educa
tional policies, socio-economic status, and cultural programme 
in order to explain these distributional differences. This might 
be especially helpful when considering models in which school 

Figure 6. Models with heterogeneous and homogeneous variances. The figure was created manually with the free software draw.io (https://www.drawio.com/).

906



success is predicted. For subsequent analysis, one could include 
PISA test results as outcomes that are predicted by both cre
ative activities at school and growth mindset.

4. General Discussion

Modeling heterogeneous within-cluster (co)variances extends 
traditional within-between variance decomposition and offers 
the potential to inform further research and educational policy 
making. The present article has empirically evaluated and illus
trated how multilevel multigroup (ML MG) SEMs can be esti
mated as single-level multigroup restricted CFAs in which 
grouping is brought about by a discrete between-cluster vari
able. Within the small simulation study, we found evidence 
that the proposed WFmultigroup approach can result in accur
ate and unbiased estimates of a bivariate intercept-only model 
in settings with moderately large numbers of clusters and clus
ter sizes (g > 100 and n > 10 per group). Moreover, results 
suggest that larger between-cluster variances r2

B and larger VRs 
(i.e., when variance heterogeneity was larger) can lower the 
required sample sizes for accurate between-cluster and ICC pa
rameter estimates (and vice versa, that smaller between-cluster 
variances and smaller VRs require larger sample sizes). With 
the empirical illustration, we demonstrated the WFmultigroup 
approach’s implementation in R with the package lavaan.

Some limitations of the WFmultigroup approach should, 
however, be noted. Firstly, the WFmultigroup approach might 
be inadequate when large cluster sizes and/or large numbers 
of groups are concerned. With the WF data matrix, ðp � nkÞ �

gk is the minimum requirement for convergence due to the 
implementation of MLE in lavaan. If this requirement is not 
fulfilled, one may need to revert to Mplus or the “genuine” 
ML MG SEM in lavaan, where the LF data matrix is sub
jected, which imposes a less restrictive requirement, p �
ðgk � nkÞ: Alternatively, full information maximum likelihood 
(FIML) estimation, which uses the raw data instead of the 
sample covariance matrices, or Bayesian estimation, which 
treats each missing value as random variable such that each 
missing value’s uncertainty is accounted for by the uncertainty 
in the other parameters, might be applied. Note, however, 
that FIML might result in non-convergence when the amount 
of missings is too large (as in the empirical data set used in 
the present article) and that software options for Bayesian esti
mation in ML MG SEM might be limited. Secondly, when the 
amount of missing values is substantial and/or when the clus
ter sizes are highly unbalanced while the number of groups is 
small, then multiple imputation of the data might be ques
tionable. In our empirical example data set, up to 72% of 
missing values of a variable in one group were imputed, and 
we justified the procedure by the large existent sample 
(N ¼ 3, 398 and g ¼ 274), evidence for the data being MAR, 
and the results of the sensitivity analysis. However, in other 
settings, this procedure may not be warranted. Then, one 
might again resort to the alternatives discussed above. In any 
case, future research could investigate multiple imputation in 
the context of large sample, heterogeneous, clustered data 
with unbalanced numbers of clusters, highly differing cluster 
sizes and large amounts of missings. Lastly, to apply the 

WFmultigroup approach, one has to be aware of the grouping 
variables that give rise to heterogeneous variances. When 
there is a large quantity of possible between-cluster variables, 
manual exploration might take a considerable amount of 
time. An alternative strategy to identify heterogeneous within- 
cluster (co)variances might be to use classification algorithms 
such as SEM trees (e.g., Brandmaier et al., 2013). For instance, 
after estimating a multilevel multigroup model in which each 
cluster is considered a separate group, SEM trees might help 
find similarities between clusters that lead to broader groups. 
However, keep in mind that, depending on the number of 
observed variables, this approach may require a large amount 
of computational resources.

Next, possible extensions and applications of the pro
posed approach are discussed. Firstly, when the data con
tains a third level (e.g., schools, where level-1 units are 
students, and level-2 units are classes), but its sample size is 
scarce (e.g., less than ten units, see Asparouhov & Muthen, 
2012), which reduces the chances of a converging model 
(see e.g., L€udtke et al., 2011, who found this for level-2), 
then our WFmultigroup approach might be an appropriate 
alternative. This scenario is similar to our empirical illustra
tion, where level-1 units were students, level-2 units were 
schools, and level-3 units, or rather the grouping variable, 
were countries (though we deliberately selected only two 
level-3 units). However, notice that cross-level interactions 
with level-3 variables cannot be modelled this way. 
Secondly, in contrast to the “genuine” ML MG SEM the 
WFmultigroup approach allows to free the equality con
strains across units within a cluster (i.e., the equality con
strains across the p � n “observed” variables of the data 
matrix in WF can be relaxed). When longitudinal data is 
concerned, this enables heterogeneous variances at different 
measurement occasions. For example, in a pre-post-test 
scenario, one might assume the variances to be smaller in 
the post condition. Thus, one could have a model which 
allows for group-specific (i.e., experimental and control con
dition) as well as time-specific (i.e., pre and post measure
ments) heterogeneous within- and between-cluster 
(co)variances. With hierarchical modeling, such a model 
might be estimated as well but here we could not fit mea
surement models and multiple outcomes. Thirdly, it would 
be interesting to explore more complex models that use het
erogeneous within-cluster (co)variances as predictors or out
comes. Past research explored these possibilities. For 
instance, Gr€ohlich et al. (2009) examined whether homoge
neous or heterogeneous ability groups are more suited for 
predicting learning and students’ achievements and 
McNeish (2021) demonstrated how to estimate location 
scale models in general form as a multilevel SEM in Mplus. 
In the latter, different models for both mean (location) and 
variance (scale) of outcomes can be specified. Our 
WFmultigroup approach could extend the scale location 
models by modeling heterogeneous variances.

Another avenue for future research may be to investigate 
the effect of the VR more thoroughly. Within our simulation 
study, we found that the accuracy of between-cluster param
eter estimates was larger when the VR was increased. We 
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suggested that this would be related to the factor analytic 
modeling within the WF approach. Specifically, between-clus
ter (co)variances are estimated as common factor (co)varian
ces that are equality constrained across groups. When the VR 
increased, the ratio of common (i.e., between-cluster) to 
unique (i.e., within-cluster) variances of the indicators (i.e., 
the p � n “observed” variables in the WF data matrix) in the 
second group increased as well, and thereby, the amount of 
communality of the indicators across both groups increased. 
Prior research showed that larger commonalities required 
smaller sample sizes for factor recovery (MacCallum et al., 
1999). Future research could scrutinize this hypothesis and 
validate whether this effect is unique to the WFmultigroup or 
present in the “genuine” ML MG SEM as well.

The present article proposed a way to estimate heteroge
neous within-cluster (co)variances, which are stratified by a 
discrete between-cluster variable, as multilevel multigroup 
SEMs in a single-level framework where a restricted CFA 
for multiple groups is fitted. Moreover, we demonstrated 
the application in detail with the lavaan package in R. We 
hope that the proposed approach facilitates research and 
teaching, and inspires new research endeavours that con
sider and explore heterogeneity of variances.
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Appendix A 
Additional figures

Figure A1. The distributions of raw data and cluster means under homogeneous and heterogeneous conditions. The upper row shows raw data and the lower 
row cluster means of one observed variable. The simulated heterogeneous conditions have been adapted from the PISA data from the empirical illustration where 
larger between- and within-cluster variances have been observed in the first group. Accordingly, in the heterogeneous conditions r2

B 1 ¼ 0:10 and r2
W 1 ¼ 0:90 

(Group 1), and r2
B2 ¼ 0:05 and r2

W 1 ¼ 0:45 (Group 2). For homogeneous conditions, both groups have the same variances as the first group. For example, for het
erogeneous level-1: r2

B 1 ¼ r2
B 2 ¼ 0:10, r2

W 1 ¼ 0:90, and r2
W 1 ¼ 0:45: The number of clusters (g ¼ 3, 000), cluster sizes (n ¼ 30), and VRs at both levels 

(VRbetween−cluster ¼ VRwithin−cluster ¼ 2) have been simplified. The code to generate the data and the figure can be found on Github (https://github.com/demianJK/ 
WFmultigroup)
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Appendix B 
Complete R Code for empirical illustration
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