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ABSTRACT

Heterogeneity of variance is more than a statistical nuisance when variance parameters are of substan-
tial interest. In multilevel modeling (e.g. students within classes), for instance, the inclusion of discrete
variables at the between-cluster level (e.g. school type) may lead to the detection of differences
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between variances at the within-cluster level (e.g. students’ performance in a test). The resulting het-
erogeneous variances (e.g. lower variance for students at high schools compared to grammar schools)
have the potential to inform research and practice (e.g. on educational effectiveness). Along the lines
of ‘people are variables too’, we demonstrate how the single-level formulation of multilevel structural
equation models, the wide format approach (Barendse & Rosseel, 2020; Mehta & Neale, 2005), can be
used in combination with multigroup modeling in order to obtain heterogeneous variance estimates.
We provide evidence for the proposed WFmultigroup approaches’ accuracy by means of a simulation
study and showcase its application with an empirical illustration with the lavaan package in R.

Homogeneity of variances is a standard assumption in
multilevel analysis. When disentangling within-cluster (e.g.,
student) and between-cluster (e.g., class) effects, it is
assumed that within-cluster (residual) variances are equal
across clusters, for instance, that variability of students” per-
formance in a test is equal across classes. However, we may
think of multiple scenarios where the homogeneity assump-
tion is likely to be violated. For example, the variability of
student’s performance in a test might be contingent on the
type of school they attend. The performance of students
from high schools might be less variable than that of stu-
dents from grammar schools. Indeed, empirical evidence
suggests that heterogeneity of variance is a frequently
observed phenomenon (Goldstein, 2005). Keselman et al.
(1998) reviewed articles from prominent educational and
behavioral science journals and reported a median variance
ratio (VR) of 2.25. In other words, the group with the lar-
gest variance (e.g., grammar schools) showed variability
more than twice the size of the group with the smallest vari-
ance (e.g., high schools). Nevertheless, a recent evaluation of
reporting practice in multilevel research (Luo et al., 2021)
showed that only 4.5% of studies checked the homogeneity
assumption. The heterogeneity of variances appears to be
less methodologically considered than empirically observed.
Whether heterogeneity of variances is considered a nui-
sance or an avenue depends on the research focus. Evidence
suggests that unaccounted heterogeneity biases standard
errors but not point estimates (Huang et al, 2023;

Korendijk et al., 2008; Rosopa et al., 2019). Thus, if one is
merely interested in means (e.g., of heterogeneous varian-
ces), then the standard post-hoc procedure is to correct the
standard errors. This can be done, for example, by using
robust standard errors (see Maas & Hox, 2004), resampling
techniques (e.g., Zitzmann et al., 2023; see also Zitzmann
et al., 2024), or by applying a non-linear transformation to
the dependent variable (e.g., Hodges, 1998). If one is plan-
ning a study where one expects variances to be heteroge-
neous, calculating adequate sample sizes for the
heterogeneous populations a priori is suggested (Candel &
van Breukelen, 2015).

On the other hand, heterogeneous variance components
might be of substantive interest. Analysing heterogeneous
within-cluster (co)variances in students’ performance can
reveal differences in teaching effectiveness or curriculum
impact within schools. These differences in variability might
offer a valuable increment to mean tendencies alone (i.e.,
the mean performance of students from high schools and
grammar schools). For instance, Raudenbush and Bryk
(1987) found that catholic schools had somewhat smaller
variability than public schools in math achievement. This
finding may help limit potential variables that give rise to
differential variances in math achievement by exploring in
which variables the two school types differ. To quantify the
heterogeneous within-cluster variances within the within-
between variance decomposition that takes place in multi-
level modeling in common statistical software, for instance,
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Mplus (L. Muthén & Muthén, 1998-2017) and lavaan
(Rosseel, 2012), Hedeker and Mermelstein (2007) and West
et al. (2022) suggested to calculate group-specific Intraclass
Correlations (ICCs are defined as the proportion of
between-cluster variance out of the sum of the between-
and within-cluster variances, ie., the total variance; Hox
et al., 2017), for instance, one ICC for high schools and one
for grammar schools. In Mplus, for instance, these are given
in the summary of the data. These may facilitate to decide
whether certain between-cluster variables (e.g., school type)
are relevant for the variability of a given outcome (e.g., stu-
dents’ test performance) or not.

To model heterogeneous variances, advanced statistical
techniques have to be employed. Broadly speaking, there
are two main frameworks that are suited to model hetero-
geneous variances for multilevel data: hierarchical models
with heterogeneous variances and multilevel multigroup
SEM. Hierarchical models with heterogeneous variances
(also known as HET or dispersion models; e.g.,
Raudenbush & Bryk, 1987) are prominent in longitudinal
research where inter-individual differences in intra-individ-
ual change is the subject of investigation. They are avail-
able in the nlme package in R. However, their main
disadvantage is that one can neither model more than one
dependent variable simultaneously nor measurement error.
Multilevel multigroup SEMs (ML MG SEM; eg., B.
Muthén, 1997), however, are able to do so. Generally,
multigroup models are frequently employed to test for
measurement invariance in confirmatory factor analysis
(CFA) across groups (e.g., school type, countries, measure-
ment occasions), which is a prerequisite for cross-group
comparisons such as group mean differences. When the
data is hierarchical (e.g., schools in different countries,
classes on multiple measurement occasions in a cohort
study), then ML MG SEM allows to account for both the
multigroup and multilevel nature. While these modeling
approaches are available in common statistical software,
we demonstrate along the lines of ‘people are variables
too” how they can be estimated in a single-level framework
using the wide format approach (Barendse & Rosseel,
2020; Mehta & Neale, 2005; Walther, Hecht, Nagengast,
et al.,, 2024). First, one needs to reformulate the multilevel
SEM as single-level restricted confirmatory factor analysis
(CFA) in the wide format (WF) approach. Then, one
applies the multigroup feature to estimate group-specific
(within-cluster) variances.

The present article has two objectives. Firstly, we will
introduce our proposed WFmultigroup approach, which
develops the notion of multilevel multigroup SEM as a sin-
gle-level restricted CFA for multiple groups, and illustrates
how to implement it in the lavaan package in R. Secondly,
we will make the point that multilevel multigroup SEMs,
which are usually used for testing for measurement invari-
ance across groups, can also be used to model heteroge-
neous within-cluster (co)variances of manifest variables that
are stratified by discrete between-cluster variables. The pro-
posed WEmultigroup approach is supported by a simulation
study and its application is demonstrated through an

empirical example. The restrictions and limitations of the
method will be addressed in the discussion.

1. The WFmultigroup Approach
1.1. Background

By the beginning of the century, hierarchical modeling and
structural equation modeling, which have been thought of
as two non-overlapping traditions for a considerable time,
have been shown to be equivalent (e.g., Bauer, 2003; Rovine
& Molenaar, 2000). Subsequently, Barendse and Rosseel
(2020) and Mehta and Neale (2005) demonstrated that a
multilevel structural equation can be fit by means of a sin-
gle-level measurement model (CFA). A crucial feature of
this reformulation is the data format. In the standard multi-
level SEM, the data matrix is used in long format (LF),
whereas in the single-level approach, the wide format (WF)
data matrix is subjected. These LF and WF approaches to
multilevel SEM have been shown to be empirically equiva-
lent under various conditions in terms of estimation accur-
acy (Barendse & Rosseel, 2020; Mehta & Neale, 2005;
Walther, Hecht, Nagengast, et al., 2024).

We were motivated by similar considerations about
equality: when a multilevel SEM can be estimated as a sin-
gle-level CFA, then a multilevel multigroup SEM may be
estimated as a single-level multigroup CFA. Therefore, we
suggest extending the WF approach by multigroup modeling
and altering the model specification to allow for group-spe-
cific variances. In the remainder of this article, we will illus-
trate how a model with heterogeneous within-cluster
(co)variances stratified by a between-cluster predictor can
be fitted. However, models with different assumptions on
heterogeneity at both levels as stratified by a between-cluster
variable can be estimated with the proposed approach as
well (see the complete code of the empirical illustration in
Appendix B).

1.2. How It Works

Figure 1 illustrates the differences of the standard LF, the
WE, and the proposed WFmultigroup approach to multi-
level SEM. The depicted minimal example data set consists
of ten clusters (g = 10) with two units in each cluster
(n = 2). For every unit we observe two continuous variables
(p =2), x1 and x,, which are aggregated in order to obtain
between-cluster variables. There is one further discrete
between-cluster variable with two levels (k = 2) that serves
as the grouping variable.

In Panel A, it can be seen that the WF approaches, in
contrast to the standard LF approach, split the p observed
variables into p - n variables in the data frame (“people are
variables t00”, Mehta & Neale, 2005, p. 1). For instance, x; ;
is the observed variable x, for every 1* unit in the cluster
(i =1). Thus, rows in the WF data matrix correspond to
the numbers of clusters (g = 10; level-2 units) whereas in
the LF data matrix, they correspond to the total number of
units in all clusters (g - n = N = 20; level-1 units).
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Figure 1. The LF, WF, and WF multigroup approaches. Data set: the data collected in a given setting. Data Matrix: the data set in matrix form, where columns refer
to observed variables and rows to observed units. Data Format: one of two possible formats of the data matrix, long format (LF) or wide format (WF). In WF, every
observed variable p is split for every unit in the cluster (n). For instance, x; 1 is x; for every first unit in each cluster. Sample Covariance Matrix: a symmetric matrix
that contains (co)variances of the observed variables. Model Specification: representation of the model to be estimated, here, this is a bivariate two-level intercept-
only model. Between-cluster parameter estimates are located above the dashed line; within-cluster parameter estimates are located below. At each level, identical
parameter estimates indicate equality constrains. The example data set has g = 10 clusters & n = 2 units, and p = 2 observed variables. Note that only the first
four clusters are depicted. The R code to generate the data and models is available on Github (https://github.com/demianJK/WFmultigroup). The figure is adapted
from “Shrinking Small Sample Problems in Multilevel Structural Equation Modeling via Regularization of the Sample Covariance Matrix” by J.-K. Walther, M. Hecht,
and S. Zitzmann, 2024, Structural Equation Modeling Journal, 1-20. https://doi.org/10.1080/10705511.2024.2380919.

From the data matrices, the respective sample covariance
matrices are estimated (see Panel B). Their dimensions are
obtained from the number of respective “observed” variables
(i.e., columns of the data matrix): p x p in the LF approach,
and (p-n) x (p-n) in the WF approaches. The standard
WFEF approach has one sample covariance matrix, whereas
the WFmultigroup approach has two (i.e., one per group).
Hence, the sample size for each sample covariance matrix
depends on the number of clusters and cluster sizes in each
group. In our example data set, there are balanced numbers
of clusters and cluster sizes. Thus, each matrix is estimated
by five clusters with two units each (g=5 and n=2)
whereas the one WF sample covariance matrix is estimated
by the full ten clusters with two units each (g= 10
and n = 2).

Regarding the model specification in Panel C, the WF
approaches in contrast to the standard LF approach set equality
constrains across the n splits of each observed variable p.
Therewith, the within-cluster (co)variances of all i units within
a cluster are set to be homogeneous. The WFmultigroup

approach relaxes these equality constrains by applying con-
strains only for each of the k groups. Thereby, within-cluster
(co)variances of all i units within a cluster are set to be homo-
geneous for each observed variable only per group. Put differ-
ently, within-cluster (co)variances are heterogeneous by group.
The between-cluster means, which are modelled as latent factor
intercepts, are also allowed to differ by group. In contrast,
between-cluster (co)variances are set to be equal across groups,
because we only assume the within-cluster (co)variances to be
heterogeneous (though we could model the between-cluster
(co)variances to be heterogeneous as well with this approach).
Thus, one simply fits a multilevel SEM for each group with cer-
tain equality constrains across groups, which can be conceived
as a multilevel multigroup SEM.

1.3. Sample Size Requirements

Whilst the WFmultigroup approach offers multiple possibil-
ities for estimating parameters constrained and freely across
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groups and levels, it has one noteworthy limitation due to
its data format, which concerns sample size and conver-
gence. The way the traditional maximum likelihood estima-
tor (MLE) is implemented in lavaan requires a positive
definite sample covariance matrix (Hamaker et al., 2003;
Singer, 2010; Van Montfort et al., 2018; Voelkle et al., 2012;
Walther, Hecht, Nagengast, et al, 2024), which, amongst
others, necessitates that the supplied data matrix has just as
many or less columns than rows. In the standard WF
approach, cols < rows translates to (p-n) <g (Walther,
Hecht, Nagengast, et al., 2024). However, as multiple sample
covariance matrices are estimated in the WFmultigroup
approach (i.e., one per group), (p - nx) < g has to hold for
each group. When the number of clusters and cluster sizes
differ substantially across groups, traditional MLE, which is
based on the sample covariance matrix, might not be able to
fit the model. However, one might use full information
maximum likelihood (FIML) estimation, which uses the raw
data instead and, hence, circumvents the problem (Hamaker
et al, 2003; Trendafilov & Unkel, 2011; Unkel &
Trendafilov, 2010; Voelkle et al., 2012). However, when the
amount of missing data is too large, estimation might fail as
well. One way to deal with both problems is multiple imput-
ation, which we apply in the empirical example. However,
before that, we will describe results from a small simulation
study (without missing values) in which the performance of
the proposed WFmultigroup approach was examined.

2. Simulation Study

We conducted a simulation study to investigate whether the
proposed WFmultigroup approach is accurate and unbiased
in estimating heterogeneous within-cluster (co)variance
structures which are grouped by discrete between-cluster
variables. Empirical equivalence of WFmultigroup with the
“genuine” ML MG SEM for all homogeneous, heterogeneous
between-cluster (co)variances and heterogeneous within-
and between-cluster (co)variances models is demonstrated
in the complete code for the empirical illustration in
Appendix B.

2.1. Method

The computations were conducted on an AMD Ryzen
Threadripper PRO 3975WX 32-cores (3.50 GHz) CPU on a
Windows 10 (Version 20H2) platform utilising R version
44.0 (R Core Team, 2024), along with several R packages:
DescTools version 0.99.50 (Signorell et al., 2024), dplyr ver-
sion 1.1.4 (Wickham et al, 2023), ggplot2 version 3.5.1
(Wickham, Chang, et al., 2024), lavaan version 0.6-17
(Rosseel et al,, 2024), patchwork version 1.2.0 (Pedersen,
2024), tidyr version 1.3.1 (Wickham, Vaughan et al., 2024).
The R code for data generation, analysis, and figures is
available at https://github.com/demianJK/WFmultigroup.

2.1.1. Data Generation
We varied the number of clusters (g = 200,500, 1000), the
cluster size (n = 2,10,30), the variance ratio (VR = 2,5),

and the variance at the Dbetween-cluster level
(63 = 0.05,0.25). This resulted in 2 x 2 x 3 x 3 = 36 simu-
lation conditions overall. The number of observed variables
was fixed to p =2, and two groups, as indicated by a dis-
crete between-cluster variable (k = 2), were considered. The
magnitudes of the between-cluster variances were informed
by the lower and upper limits of frequently observed ICCs
in the educational and behavioral sciences (Adams et al,
2004; Gulliford et al., 1999). In the first group, the total
variance was set to 1, and the within-cluster variance was
computed by o2, =1-0% (and thus, 63 =ICC;). The
within-cluster variance in the second group was computed
by dividing through the VR. Note that the between-cluster
(co)variances were equal across both groups as we only
assumed the within-cluster (co)variances to be heteroge-
neous. The covariances at each level were determined by
multiplying the variance with the fixed correlation of p =
0.3 which reflects a large correlation (Gignac & Szodorai,
2016).

2.1.2 Data Analysis

We considered only one model, a bivariate two-level inter-
cept-only model with heterogeneous within-cluster (co)va-
riances, which we estimated as a multigroup single-level
CFA with lavaan. As Hedeker and Mermelstein (2007) and
West et al. (2022) suggested, we computed group-specific
ICCs by ICC, = c%/(c%+ o) and ICC, = o3/(0% +
o%2) for each variable.

2.1.3. Evaluation Criteria
We thoroughly investigated the estimation accuracy of the
(co)variance structure in terms of the relative root mean

squared error (RMSE), /> (0 —0)?/0-100%, which is a
measure that combines both bias and variance of an estima-

tor, and the relative bias, 5)(6 — 0)/6 - 100%. Convergence
and coverage rates were also reported briefly. A model was
considered converged if the optimizer indicated that it had
found a solution. Convergence rates represent the percent-
age of converged models out of all estimated models.
Coverage rates indicate the percentage of confidence inter-
vals that encompass the population parameter. Note that for
estimation accuracy and coverage rates, we considered only
(co)variances (but not means) of the intercept-only models.

2.2. Results

Under every simulation condition, all models converged.
Moreover, all coverage rates fell between the acceptable
range of 91% to 98% (L. K. Muthén & Muthén, 2002). The
more interesting results for relative RMSE and bias are
depicted in Figure 2.

At the between-cluster level, previous findings could be
replicated: smaller numbers of clusters, smaller cluster
sizes, and smaller between-cluster variances (and thus,
smaller ICCs as well) were detrimental for overall accuracy
(see also Ludtke et al, 2011; Meuleman & Billiet, 2009;
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Figure 2. Estimation accuracy of between-cluster, within-cluster, and ICC parameter estimates. VR = variance ratio. Only (co)variance parameter estimates are con-
sidered. In a bivariate two-level intercept-only model with heterogeneous within-cluster (co)variances for two groups, this comprises three parameter estimates at
the between-cluster level (i.e. two variances and one covariance, ®g), six parameter estimates at the within-cluster level (i.e. two variances and one covariance for
both groups, ® ), and four ICC parameter estimates (i.e. one for each group per variable, p).

Stegmueller, 2013; Walther, Hecht, Nagengast, et al.,, 2024;
Zitzmann, 2018; Zitzmann et al, 2016). Combined, these
lead to a relative RMSE of up to 150%, even when the
minimum number of clusters was moderately large
(g =200). Increasing the cluster size moderately (from
n=2 to n=10) reduced the relative RMSE by up to
40%. Smaller cluster sizes and smaller between-cluster var-
iances were associated with larger negative biases.
However, all sample sizes resulted in biases within the
acceptable limit of |10%]| (L. K. Muthén & Muthén, 2002).

It is interesting to note that larger VRs led to more accur-
ate and less biased between-cluster parameter estimates,
especially when the cluster size was small. Drawing on the
earlier example setting, when g =200 and #n =2, when
VR =2, the relative RMSE was 150%, whereas when
VR =5, it dropped to half. We hypothesize that this
might be related to the factor analytic modeling: In the
single-level multigroup CFA framework, the between-clus-
ter (co)variances are estimated as a common factor (co)va-
riances that are equality constrained across groups. When
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the VR was larger, the ratio of common to unique vari-
ance of the indicators (i.e., the p-n “observed” variables),
which might be though of as their ICCs (common as
between-cluster and unique as within-cluster variances),
got larger by design in the second group. Thus, the
amount of communality of the indicators across both
groups increased. Especially when the number of indica-
tors was small (ie, small cluster sizes n), a larger VR
could have compensated for its negative effect. This argu-
mentation is in line with evidence suggesting that smaller
common factor variances (i.e., commonalities) are more
strongly influenced by sample size when it comes to factor
recovery (MacCallum et al., 1999).

At the within-cluster level, smaller numbers of clusters
and smaller cluster sizes were related to less accurate esti-
mates as well, but the relative RMSE was only up to 20% at
worst. Bias was close to zero. This replicates earlier findings
suggesting that parameter estimates of between-cluster varia-
bles are less accurate and more biased than those of within-
cluster parameter estimates (e.g., Depaoli & Clifton, 2015;
Finch & French, 2011; Hox & Maas, 2001; Hox et al., 2010;
Ludtke et al., 2011; Muthen & Satorra, 1995; Zitzmann
et al., 2016). There was no effect of the VR on the accuracy
of the within-cluster parameter estimates.

The ICC estimates, as derived from the between- and
within-cluster variance estimates, inherited both their
strengths and weaknesses: smaller numbers of clusters,
smaller cluster sizes, smaller between-cluster variances, and
smaller VRs led to less accurate and more negatively biased
estimates (as the between-cluster parameter estimates) but
the magnitude of inaccuracy and bias was less strong (as for
the within-cluster parameter estimates).

Overall, the proposed WFmultigroup approach lead to
accurate and almost unbiased estimates and converging
models with accurate standard errors. We recommend using
at least a moderate number of clusters and cluster sizes to
guarantee good accuracy and unbiasedness. In the case of a
bivariate intercept-only model with two groups with bal-
anced numbers of clusters and cluster sizes, a sample of g =
200 and n = 10, or more precisely, g = 100 and n = 10 for
every group, satisfies this requirement.

3. An Empirical lllustration

In the following, we will work through a step-by-step guide
on how to estimate a multilevel multigroup SEM as a sin-
gle-level restricted multigroup CFA in lavaan using an
empirical illustration. Specifically, we will investigate the
heterogeneity of (co)variances of two observed variables,
creative activities at school and growth mindset, in Albania
and Ireland (ie., the between-cluster variable is country).
The analysis of their (co)variance structures can inform us
about differences in the countries which one could subse-
quently explore to gain insight into variables that influence
the variability of these outcomes. We will fit a model which
assumes heterogeneity of within-cluster (co)variances (and
homogeneity of between-cluster (co)variances) across groups
in the single-level multigroup framework (WFmultigroup).

In the main body of this article, only the code for the model
specification is presented. The code for all other prior steps,
such as data subsetting, inspection of missing data, and
multiple imputation, as well as model specifications of mod-
els with homogeneous within- and between-cluster (co)va-
riances, heterogeneous between-cluster (co)variances, and
heterogeneous within- and between-cluster (co)variances
with the WFmultigroup approach and the “genuine” ML
MG SEM approach in lavaan can be found in the complete
code in Appendix B. We draw on an open access data set of
the Programme for International Assessment of Student
Assessment (PISA) from 2022 which can be downloaded
from https://www.oecd.org/pisa/data/2022database/. Note
that the data set and variables were chosen by convenience
to provide readers with a reproducible example and illus-
trate the WFmultigroup approach and thus, the investigated
research question is not of substantive interest.

All computations of the empirical illustration were run
on a Macbook Pro (2021) with an M1 Pro CPU on the
Sonoma 14.5 platform utilising R version 4.4.0 (R Core
Team, 2024) with the following packages: dplyr version 1.1.4
(Wickham et al., 2023), foreign version 0.8-87 (R Core
Team et al., 2024), ggplot2 version 3.5.1 (Wickham, Chang,
et al., 2024), huxtable version 5.5.6 (Hugh-Jones, 2022), lav-
aan version 0.6-18 (Rosseel et al., 2024), Ime4 version 1.1-
35.5 (Bates et al., 2024), MICE version 3.16.0 (Buuren et al.,
2023), naniar version 1.1.0 (Tierney et al., 2024), patchwork
version 1.2.0 (Pedersen, 2024), psych version 2.4.6.26
(Revelle, 2024), and tidyr version 1.3.1 (Wickham, Vaughan
et al., 2024).

3.1. Data Set

3.1.1. The Sample

The complete PISA data set was collected within a stratified
two-stage sampling process. Firstly, schools in which 15-
year-old students (i.e., the target level-1 units) may be
enrolled, were sampled. The minimum number of schools
(i.e., level-2 units; clusters) for each country were 150.
Secondly, students within these schools were sampled. The
two observed variables that we consider are not part of the
PISA test but the background information.

For our empirical illustration, we selected two countries
from the pool of included countries: Albania and Ireland.
The choice fell on them because both variables had a large
VR in these countries and where thus well suited for the
kind of analysis we want to illustrate. The total subsample
consists of ¢ = 444 schools with a total of N = 11,698 stu-
dents. The number of schools (i.e., clusters) and students in
each school (i.e, cluster sizes) for both countries are
depicted in Figure 3. As can be seen in panel A, 274 schools
are from Albania and 170 schools from Ireland, with a total
of  Nupania = 5,569 and  Npeand = 6,129  students.
Unfortunately, however, the school sizes differ substantially
from #pin =1 to M. = 45 with stark differences across
countries (see Panel B). This will introduce a considerable
amount of missing values later on when reformatting LF to



Albania

Ireland

400

300

3]

00

Frequency

100

Number of Schools (g)

903

B
20
o015 z
17,) o
210 E.
25
Q
A 0
kS
o 20
215 5
E &
= 10 =3
Z ) [=%
5
0 10 20 30 40

School Size (n)

Figure 3. Number of schools and school sizes by country. Number of Schools = Clusters (i.e. Level-2 units); school size = cluster size (i.e. level-1 units students).

Raw Data

2000 2000

7

1500 00

P -
9 [
g g
=, 1000 =, 1000
o o
2 g
i3 =
500 500
0 0
6 -3 0 3 6 -6
Creative Activities at School (CREATAS)
Cluster Means
D E
150 150
> 100 > 100
Q o
= =
15} Q
=] =]
o o
o o
= &
=50 — =50
0 . 0
-6 6 -6

-3 0 3
Creative Activities at School (CREATAS)

Country

-3 0 3
Growth Mindset (GROSAGR)

-3 3
Growth Mindset (GROSAGR)

o0 T © 00

Growth Mindset (GROSAGR)

6 -6 -3 0 3 6
Creative Activities at School (CREATAS)

‘ -

Growth Mindset (GROSAGR)

-6
-6 -3

0 3 0 3
Creative Activities at School (CREATAS)

6

Albania Ireland

Figure 4. The distributions of raw data and cluster means. Negearas(any = 8,449 (28% missings) with Negearas(abania) = 3,398 (23.5% of all missings and 44.5% of
missings in Albania) and Negeaas(reland) = 5,051 (4.5% of overall missings and 10% of missings in Ireland); Nerosacrean = 9,319 (20% missings) with
Nsrosacr(atbania) = 3,870 (19% of all missings and 58% of missings in Albania) and Ngrosac(ireiland) = 5,449 (1% of all missings and 2% of missings in Ireland); num-

bers refer to the LF data matrix with unbalanced cluster sizes (see Figure 3).

WEF, where balanced cluster sizes are required, and thus, col-
umns change from p to p - fiyax.

3.1.2. The Observed Variables

The two variables that we included in our analysis are cre-
ative activities at school (CREATAS) and growth mindset
(GROSAGR). According to the codebook and the plotted
data (see Figure 4), they are continuous, and even if their
distributions deviate from normality, see Panel A and B, the
large sample sizes should warrant inferential conclusions,
even in the presence of relatively large amounts of missing
data (28% and 20%).

By plotting the raw data (Panel A to C) and the cluster
means (Panel D to F) per group, one gets valuable informa-
tion on potential heterogeneity of (co)variances. In Panel A
and B, the univariate distributions of creative activities at

school and growth mindset are depicted. The variability of
each variable differs group-wise. The same holds true for
the coherence of both variables in Panel C. This suggests
that (at least) the within-cluster (co)variances are heteroge-
neous. When inspecting the distributions of the cluster
means, the univariate distributions in Panel D and E and
the bivariate distribution in Panel F, one sees that they dif-
fer group-wise as well. Taken together, this suggests that
both the within- and the between-cluster (co)variances are
heterogeneous. We simulated data under differing homoge-
neous and heterogeneous conditions at both levels and
examined the variability of raw data and cluster means to
support this claim (see Figure Al in Appendix A). When
both the within- and between-cluster levels in both groups
were from different populations, then a pattern of group-
wise differing raw data and cluster means appeared. Note,
nevertheless, that in the main body of the article, only the
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model specification of the model with heterogeneous
within-cluster (co)variances is included. For the model spe-
cification of the other models, see the complete code in
Appendix B.

We investigated the missing patterns of the data in mul-
tiple ways: by plots, inferential statistics with Little (1988)’s
test of MCAR' for multivariate data, correlation tables, and
with logistic multilevel models that predicted missingness.
In sum, we found evidence that they are not MCAR but
MAR. Missing values could be predicted by the value or
missingness of the other variable and the country. Thus,
missing patterns seem to be largely contingent on the data
collection in the schools in both countries. Moreover, a con-
siderable amount of missing values for each variable, given
the stark differences in school sizes, is introduced when
reformatting to WF (where the data matrix is ¢ X p - imax)
as balanced school sizes are necessary. As Schafer (1997)
argued, an unbalanced design can be considered a missing
data problem. Multiple imputation has been applied to deal
with unbalanced designs in ANOVA before (Ginkel &
Kroonenberg, 2021). Thus, we imputed not only the
“genuine” missing values but the missing values that had to
be introduced by the balanced cluster sizes required for
reformatting. We used multiple imputation by chained
equations (MICE; Buuren & Groothuis-Oudshoorn, 2011) in
the LF data matrix. For each variable, we specified an
imputation model containing the other variable as predictor
and accounting for the clustering. Imputation was done sep-
arately for each country, such that we assumed homoge-
neous variances within each country. In total, for Albania,

There are different kinds of missing patterns. Missing Completely at Random
(MCAR): missings are completely independent of other variables and the
missing value itself. Missing at random (MAR): missings are dependent on
other variables but not on the missing itself. Missing Not at Random (MNAR):
missings are independent of the other variables but they are not random.

72% of values of creative activities at school and 69% of val-
ues of growth mindset, and for Ireland, 34% and 29%
of these values were imputed. Admittedly, these quantities
are very large but the data sets used for imputation were
considerably large as well: for Albania, Ncrparas(atbania) =
3,398 and Ngrosacr(atbania) = 3,870, and for Ireland,
NCREATAS(IrelandQ = 5,051 and NGROSAGR(Irelund) =2,201. The
existent and imputed data is depicted in Figure 5.
Moreover, sensitivity analysis revealed that the means and
standard deviations of the existent and imputed data sets
were very close (see Table 1). Note that we combined the
imputed data sets and run the model estimation on this
complete data set instead of running separate models for
each imputed data set and pooling the results, as suggested
by Rubin (2004) and Schafer and Olsen (1998), because our
kind of analysis was not supported in the multiple imput-
ation package MICE. After multiple imputation, the total
sample consisted of g = 444 schools with n = 45 students,
which results in a total of N =19,980 students where
Natpania = 12,330 and Nyeng = 7, 650.

Note that because of the nature of the data - a large sample
of heterogeneous, clustered data with unbalanced numbers of
clusters, highly differing cluster sizes and large amounts of
missings — empirical evidence on ways to deal with the miss-
ings was sparse. While there was literature on large data sets
with missing cases up to 99% per variable (Stuart et al., 2009),
moderate sized clustered data (g = 300, n = 2 — 25; Huque
et al., 2020), multigroup data (of randomized control trials;
Jakobsen et al., 2017), unbalanced group sizes (Schafer, 1997),
heterogeneous variances (with k-nearest neighbours imput-
ation; Santos et al, 2022), and unbalanced group sizes
(Schafer, 1997), no study considered all these together. Thus,
we combined tested and untested advice in the reported way
of dealing with the missing values. Note further that we tried
several alternatives. Imputation in the WF data matrix did not



Table 1. Mean and standard deviation of existent and imputed data by country.
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Creative activities at school

Growth mindset

Albania Ireland Albania Ireland
Data M SD M SD M SD M SD
Existent 1.08 1.34 0.09 0.77 -0.36 1.29 0.16 0.86
Imputed 1.13 1.36 0.07 0.77 -0.33 1.31 0.16 0.87

For sample sizes, see note under Figure 6.

work. A joint imputation model for both countries did not
yield plausible results. FIML estimation, doing nothing about
the missings, or only imputing the “genuine” missing values
(while still introducing a considerable amount of missings by
reformatting) did not result in converging models either. In
other contexts, however, these might be viable alternatives.

3.2. Model Specification

In the following, we will illustrate how to specify a model
with heterogeneous (co)variances at the within-cluster level
in the WFmultigroup approach in lavaan. There are p-n =
2-45=90 “observed” variables in the WF data matrix
which are related mostly by equality constrains. Writing the
lavaan model syntax manually would take an unnecessary
long time. Instead, we use loops for recurring relations. For
this, we need to create a vector with the names of the
observed variables (‘varName’), and one object that contains
the number of observed variables ‘p’.

1 varNames <- c("CREATAS",
> p <- length(varNames)

"GROSAGR")

We will first create the model syntax for the within-cluster
part of the model. The within-cluster variances are estimated as
residual variances in a single-level CFA. Thus, we need to specify
Pn ~~ p, for all 90 “observed” variables. The n splits of each
observed variable p have to be equality constrained in the WF
approach in order to estimate the within-cluster parameters.
This is achieved by using the same label for the variance param-
eters. Because we want the within-cluster variances to differ by
group, we have to use different labels for the parameters in both
groups. In sum, the variances are specified in the following
form: ‘CREATAS.1 ~ ~ c(CREATAS_ albania, CREATAS_
ireland)*CREATAS.1’ where, for instance, ‘CREATAS_albania’
denotes the equality constrained variance parameter across all n
students in a school of group 1 (ie., Albania). The whole set of
specifications can be done with the following loop:

tmp2 <- cQ)
> tmp3 <- ¢Q)
s resid_var_w_hetero <- c(Q)
+ for (j in 1:p){
for (i in l:n_max){
tmp2[i] <- paste®(varNames[j], ".", i)

tmp3[i] <- paste®(tmp2[i], "~~c(", varNames[j], "_albania, "

varNames[j], “_ireland)*", tmp2[i])
o [k
It resid_var_w_hetero[j] <- paste(tmp3, collapse="; ")
n}
» resid_var_w_hetero <- paste(resid_var_w_hetero, collapse="; ")

A similar proceeding is

specific  covariances, for

required for the group-
instance, ‘CREATAS.1

~

~ c(CREATAS_GROSAGR_albania, CREATAS_GROSAGR_
ireland) *GROSAGR.1’, where, for instance, ‘CREATAS_
GROSAGR _albania’ is the within-cluster covariance of
Albania, which can be created by another loop:

i resid_cov_w_hetero <- cQ
> count <- 0
» for (i in 1:n_max){
for(j in 1:p){
for(m in 1:p){
if(j !l=m&m> jD{
count <- count + 1
resid_cov_w_hetero[count] <-
paste®(varNames[j], ".", i, "~~c(", varNames[jl, "_",
varNames [m], "_albania, ", varNames[j], "
varNames [m], "_ireland)*", varNames[m], ".", i)

}
n }
.
5}

1o resid_cov_w_hetero <- paste(resid_cov_w_hetero, collapse="; ")

Next we have to set the means of the p-n “observed”
variables to zero, as these are aggregated within-cluster vari-
ables whose group-specific mean-structure is specified at the
between-cluster level (which we will turn to later). We do
this in the form ‘CREATAS_1~ 0*1'.

means_w <- c()
tmp <- ¢
» count <- 0
+ for (j in 1:p){
for (i in 1:n_max){
+ 1
tmp[count] <- paste®@(varNames[j], ".", i,

}

count <- count
"aQ*1")
9}

1» means_w <- paste(tmp, collapse = "; ")

Now that the model syntax for the (heterogeneous) within-
cluster parameters is complete, we can move on to those of
the (homogeneous) between-cluster parameters. Between-clus-
ter variables are modelled as latent factors by the p-n
“observed” variables. Firstly, we have to fix the factor loadings
to 1 as all “observed” variables contribute equally to the factor,
‘fCREATAS = ~ I*CREATAS_1+ 1*CREATAS 2+ ...

fac_load_b <- cQ

> tmp <- ¢Q)

s for (j in 1:p){

¢+ for (i in l:n_max){
tmp[i] <- paste®@("1*",
}
fac_load_b[j] <- paste®("f",
)

varNames[j], ".", i)

varNames[j], " =~", paste(tmp, collapse="+")

s }
9 fac_load_b <- paste(fac_load_b, collapse="; ")

Following, we will specify the factor variances and inter-
cepts, which constitute the between-cluster variances and
means, in the forms of fCREATAS ~ 1’ and fCREATAS ~
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~ fCREATAS’, by way of example for the observed variable
creative activities at school (‘CREATAS’). Since both parame-
ters make use of the same loop, we create them in the
same run.

i fac_var_b <- cQ

> fac_int_b <- cQ

3 for (j in 1:p){

1 fac_var_b[j] <- paste®("f", varNames[j], "~~f",
fac_int_b[j] <- paste0("f", varNames[j]l, "~1")

varNames[j])

6}
fac_var_b <- paste(fac_var_b, collapse="; ")
s fac_int_b <- paste(fac_int_b, collapse="; ")

Finally, the between-cluster covariance is set as
fCREATAS ~ ~fGROSAGR’ in the following way:

+ fac_cov_b <- cO
> count <- 0
s for(j in 1:p){
+ for(m in 1:p){
if(j !'=m&m> j){
count <- count + 1

fac_cov_b[count] <- paste®("f", varNames[j], "~~", "f", varNames[m])
8 }
s
0}
1 fac_cov_b <- paste(fac_cov_b, collapse = "; ")
Because the factor (co)variances and means (i.e,

between-cluster (co)variances and means) require relatively
sparse code, we may set them manually in models with
sparse observed variables. Now that we finished the model
syntax, we can estimate the model by:

: model_WF_W_homo <- paste(resid_var_w_homo, resid_cov_w_homo, means_w,

sep = "; ")
s model_WF_B <- paste(fac_load_b, fac_var_b, fac_cov_b, fac_int_b, sep="; ")
+ model_WFmultigroup_homo <- paste(model WF_W_homo, model WF_B, sep="; ")

o fit_WFmultigroup <- sem(model = model_WFmultigroup_hetero_B,
data = PISA_short_balanced_imp_WF,
group="CNT",
group.equal = c("lv.variances", "lv.covariances"))

where we combined all prior code snippets to our complete
model specification ‘model WFmultigroup’ and apply it to the

imputed data set ‘PISA_short_balanced_imp_WF. The group-
ing variable country is handed over to ‘group=“CNT”. We are
able to set the between-cluster (co)variance structure to be
equal across groups by group.equal = c(“lv.variances”,
“Iv.covariances”), and thus, we do not have to use labels for the
(co)variance as for the within-cluster (co)variances.
Unfortunately, there is no appropriate shorthand function par-
ameter for equality constraining the manifest variables n-wise
(ie., the standard WF approach) per group. Thus, the within-
cluster part of the model has to be specified in the model syn-
tax (manually or by the loops we presented).

3.3. Model Parameter Estimates

In Figure 6, the model parameter estimates of the heteroge-
neous within-cluster (co)variances model are depicted. The
within-cluster variances of creative activities at school were
1.73 in Albania and 0.57 in Ireland, and those of growth
mindset were 1.68 in Albania and 0.74 in Ireland. In contrast
their covariances were quite similarly close to zero: —0.02 in
Albania and 0.04 in Ireland. Thus, overall, Albania had larger
within-cluster variances than Ireland. These stark differences in
variances in the heterogeneous model, VRcrpaas = 3.04 and
VRGrosagr = 2.27, also had an impact on the group-specific
ICC parameter estimates. Albania with its larger within-cluster
variances had smaller ICCs. Regarding creative activities at
school, the ICC was 0.04 in Albania and 0.11 in Ireland. For
growth mindset, estimates were 0.02 for Albania and 0.04 for
Ireland. The differences in within-cluster (co)variances in the
heterogeneous model, in combination with the differences in
between-cluster means, inform us about the substantial differ-
ences in the distributions of the observed variables between
both countries. Building on this, one might scrutinize differen-
ces in both countries in contextual variables such as educa-
tional policies, socio-economic status, and cultural programme
in order to explain these distributional differences. This might
be especially helpful when considering models in which school
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Figure 6. Models with heterogeneous and homogeneous variances. The figure was created manually with the free software draw.io (https://www.drawio.com/).



success is predicted. For subsequent analysis, one could include
PISA test results as outcomes that are predicted by both cre-
ative activities at school and growth mindset.

4. General Discussion

Modeling heterogeneous within-cluster (co)variances extends
traditional within-between variance decomposition and offers
the potential to inform further research and educational policy
making. The present article has empirically evaluated and illus-
trated how multilevel multigroup (ML MG) SEMs can be esti-
mated as single-level multigroup restricted CFAs in which
grouping is brought about by a discrete between-cluster vari-
able. Within the small simulation study, we found evidence
that the proposed WFmultigroup approach can result in accur-
ate and unbiased estimates of a bivariate intercept-only model
in settings with moderately large numbers of clusters and clus-
ter sizes (g > 100 and #n > 10 per group). Moreover, results
suggest that larger between-cluster variances o3 and larger VRs
(i.e, when variance heterogeneity was larger) can lower the
required sample sizes for accurate between-cluster and ICC pa-
rameter estimates (and vice versa, that smaller between-cluster
variances and smaller VRs require larger sample sizes). With
the empirical illustration, we demonstrated the WFmultigroup
approach’s implementation in R with the package lavaan.

Some limitations of the WFmultigroup approach should,
however, be noted. Firstly, the WFmultigroup approach might
be inadequate when large cluster sizes and/or large numbers
of groups are concerned. With the WF data matrix, (p - ng) <
gk is the minimum requirement for convergence due to the
implementation of MLE in lavaan. If this requirement is not
fulfilled, one may need to revert to Mplus or the “genuine”
ML MG SEM in lavaan, where the LF data matrix is sub-
jected, which imposes a less restrictive requirement, p <
(gk - nx). Alternatively, full information maximum likelihood
(FIML) estimation, which uses the raw data instead of the
sample covariance matrices, or Bayesian estimation, which
treats each missing value as random variable such that each
missing value’s uncertainty is accounted for by the uncertainty
in the other parameters, might be applied. Note, however,
that FIML might result in non-convergence when the amount
of missings is too large (as in the empirical data set used in
the present article) and that software options for Bayesian esti-
mation in ML MG SEM might be limited. Secondly, when the
amount of missing values is substantial and/or when the clus-
ter sizes are highly unbalanced while the number of groups is
small, then multiple imputation of the data might be ques-
tionable. In our empirical example data set, up to 72% of
missing values of a variable in one group were imputed, and
we justified the procedure by the large existent sample
(N = 3,398 and g = 274), evidence for the data being MAR,
and the results of the sensitivity analysis. However, in other
settings, this procedure may not be warranted. Then, one
might again resort to the alternatives discussed above. In any
case, future research could investigate multiple imputation in
the context of large sample, heterogeneous, clustered data
with unbalanced numbers of clusters, highly differing cluster
sizes and large amounts of missings. Lastly, to apply the
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WEFmultigroup approach, one has to be aware of the grouping
variables that give rise to heterogeneous variances. When
there is a large quantity of possible between-cluster variables,
manual exploration might take a considerable amount of
time. An alternative strategy to identify heterogeneous within-
cluster (co)variances might be to use classification algorithms
such as SEM trees (e.g., Brandmaier et al., 2013). For instance,
after estimating a multilevel multigroup model in which each
cluster is considered a separate group, SEM trees might help
find similarities between clusters that lead to broader groups.
However, keep in mind that, depending on the number of
observed variables, this approach may require a large amount
of computational resources.

Next, possible extensions and applications of the pro-
posed approach are discussed. Firstly, when the data con-
tains a third level (e.g., schools, where level-1 units are
students, and level-2 units are classes), but its sample size is
scarce (e.g., less than ten units, see Asparouhov & Muthen,
2012), which reduces the chances of a converging model
(see e.g., Lidtke et al., 2011, who found this for level-2),
then our WFmultigroup approach might be an appropriate
alternative. This scenario is similar to our empirical illustra-
tion, where level-1 units were students, level-2 units were
schools, and level-3 units, or rather the grouping variable,
were countries (though we deliberately selected only two
level-3 units). However, notice that cross-level interactions
with level-3 variables cannot be modelled this way.
Secondly, in contrast to the “genuine” ML MG SEM the
WFmultigroup approach allows to free the equality con-
strains across units within a cluster (i.e., the equality con-
strains across the p-n “observed” variables of the data
matrix in WF can be relaxed). When longitudinal data is
concerned, this enables heterogeneous variances at different
measurement occasions. For example, in a pre-post-test
scenario, one might assume the variances to be smaller in
the post condition. Thus, one could have a model which
allows for group-specific (i.e., experimental and control con-
dition) as well as time-specific (i.e., pre and post measure-
ments) heterogeneous  within- and between-cluster
(co)variances. With hierarchical modeling, such a model
might be estimated as well but here we could not fit mea-
surement models and multiple outcomes. Thirdly, it would
be interesting to explore more complex models that use het-
erogeneous within-cluster (co)variances as predictors or out-
comes. Past research explored these possibilities. For
instance, Grohlich et al. (2009) examined whether homoge-
neous or heterogeneous ability groups are more suited for
predicting learning and students’ achievements and
McNeish (2021) demonstrated how to estimate location
scale models in general form as a multilevel SEM in Mplus.
In the latter, different models for both mean (location) and
variance (scale) of outcomes can be specified. Our
WFmultigroup approach could extend the scale location
models by modeling heterogeneous variances.

Another avenue for future research may be to investigate
the effect of the VR more thoroughly. Within our simulation
study, we found that the accuracy of between-cluster param-
eter estimates was larger when the VR was increased. We
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suggested that this would be related to the factor analytic
modeling within the WF approach. Specifically, between-clus-
ter (co)variances are estimated as common factor (co)varian-
ces that are equality constrained across groups. When the VR
increased, the ratio of common (i.e., between-cluster) to
unique (i.e., within-cluster) variances of the indicators (ie.,
the p - n “observed” variables in the WF data matrix) in the
second group increased as well, and thereby, the amount of
communality of the indicators across both groups increased.
Prior research showed that larger commonalities required
smaller sample sizes for factor recovery (MacCallum et al.,
1999). Future research could scrutinize this hypothesis and
validate whether this effect is unique to the WFmultigroup or
present in the “genuine” ML MG SEM as well.

The present article proposed a way to estimate heteroge-
neous within-cluster (co)variances, which are stratified by a
discrete between-cluster variable, as multilevel multigroup
SEMs in a single-level framework where a restricted CFA
for multiple groups is fitted. Moreover, we demonstrated
the application in detail with the lavaan package in R. We
hope that the proposed approach facilitates research and
teaching, and inspires new research endeavours that con-
sider and explore heterogeneity of variances.
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Figure A1. The distributions of raw data and cluster means under homogeneous and heterogeneous conditions. The upper row shows raw data and the lower
row cluster means of one observed variable. The simulated heterogeneous conditions have been adapted from the PISA data from the empirical illustration where
larger between- and within-cluster variances have been observed in the first group. Accordingly, in the heterogeneous conditions ¢2; = 0.10 and cZ,; = 0.90
(Group 1), and 62, = 0.05 and o1 = 0.45 (Group 2). For homogeneous conditions, both groups have the same variances as the first group. For example, for het-
erogeneous level-1: o2; = 63, =0.10, o1 =0.90, and o = 0.45. The number of clusters (g = 3,000), cluster sizes (n = 30), and VRs at both levels

(VRpen fuster = VRuwiehi
WFmultigroup)

uster = 2) have been simplified. The code to generate the data and the figure can be found on Github (https://github.com/demianJK/
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Appendix B
Complete R Code for empirical illustration

1

5

3

4

<

%

29

###### (0) Prerequisites

## load required packages

library("dplyr") # select and filter data (version 1.1.4)

library("foreign") # read SPSS (version 0.8-87)

library("ggplot2") # figures (version 3.5.1)

library("huxtable") # APA table (version 5.5.6)

library("lavaan") # ML MG SEM (version 0.6-18)

# Note that this CRAN version of lavaan does not yield the same results in
the homogeneous model in the "genuine" ML MG SEM approach

# as the WFmultigroup approach does. However, the most recent version on
Github (0.6-19.2187) does so.

# install.packages("devtools")

# library("devtools™")

# install_github("yrosseel/lavaan")

library("1lme4") # logistic regression of missingness (version 1.1-35.5)

library("mice") # multiple imputation (version 3.16.0)

library("naniar") # MCAR test (version 1.1.0)

library("patchwork") # combining ggplots by + (version 1.2.0)

library("psych") # descriptive stats (version 2.4.6.26)

library("tidyr") # reformating (version 1.3.1)

## load data
# Go to https://www.oecd.org/pisa/data/2022database/

# Navigate to SPSS (TM) Data Files (compressed) >>> Student Questionnaire
data file and download the file

s PISA <- read.spss("../CY®8MSP_STU_QQQ.SAV", to.data.frame=TRUE, use.value.

labels = FALSE) # otherwise numerical vectors might be handled as
factors
# the data frame is in LF (i.e., each row corresponds to a student)

# If you don’t want to run the multiple imputation, simply load the final
data frame and continue in line 409.

PISA_short_balanced_imp <- read.csv(file = "/Users/julia/Documents/Arbeit/
Promotion/Forschung/Projects/03_WFmultigroup/numerical_ex/PISA_short_
balanced_imp.csv")

3 ##### (1) Data Subsetting

## select relevant variables
PISA_short <- select(PISA,
CNTSTUID, # unique student ID (level-1)
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38 CNTSCHID, # school (level-2)

39 CNT, # CNT (group)

40 CREATAS, # Creative Activities at school
41 GROSAGR # Growth Mindset

2 )

43 # PISA_short is "LF unbalanced"

44

4s ## select relevant cases (Albania and Ireland) of between-cluster variable
country

4 PISA_short <- filter(PISA_short, CNT == "ALB" | CNT == "IRL")

47

49

so ##### (2) Inspecting the Data I: Data Structure and Data Types
51

s2» ## inspect data structure and data types

str (PISA_short)

)

54

ss # is it not necessary to factorise the discrete ID indicators CNTSTUID and

CENTSCHID. . .

56

s7 ## ... but we recode the grouping variable for the figures

ss PISA_short$CNT <- ifelse(PISA_short$CNT == "IRL", yes="Ireland", no="
Albania")

s9 # (we do not factorise bc otherwise we would introduce problems with data
subsetting and multiple imputation later on)
60

61

o3 ##### (3) Inspecting the Data II: Unbalanced Cluster Sizes
64

6s ## get information on the selected subsample

o6 N <= nrow(PISA_short)

7 schools <- unique (PISA_short$CNTSCHID)

s g <- length(schools)

© n <- as.vector(table(PISA_short$CNTSCHID))

70 n_mean <- mean(n)

71 n_min <- min(n)

7 n_max <- max(n)

74 country <- c(Q)
75 for (j in 1:g){
76 country[j] <- unique(PISA_short$CNT[PISA_short$CNTSCHID == schools[j]])

v nData <- data.frame(country = country,
80 school = schools,
81 n = n)
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i a <- ggplot(nData, aes(x=g, fill=country)) +
84 geom_bar (data = transform(nData, country = NULL), fill = "grey85") +
85 geom_bar(show.legend = FALSE) + facet_grid(. ~ country) +

%

86 scale_y_continuous (name="Frequency", expand=c(0,0)) +
87 scale_x_discrete(name="Number of Schools (g)",) +
88 scale_£fill_manual (values=c("#002654", "#ffce®0")) +

89 theme_minimal () +
90 theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
91 panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +

9 labs(title="A")

93 # table(country)

94

s b <- ggplot(nData, aes(x=n, fill=country)) +

96 geom_histogram(data = transform(nData, country = NULL), fill = "grey85",
binwidth=1) +

97 geom_histogram(binwidth=1, show.legend = FALSE) + facet_grid(country ~ .)
+

08 scale_y_continuous (name="Number of Schools (g)", expand=c(0,0)) +

99 scale_x_continuous (name="School Size (n)", expand=c(0.01,0.01), limits=c
(0, NA)) +

100 scale_fill_manual (values=c("#002654", "#ffce00")) +

101 theme_minimal () +

102 theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),

103 panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +

104 labs(title="B")

6 a + b # Fig.3

s # N=11.698 with g=444 and the distribution of cluster sizes (n) differs
fairly.

109 # country-wise:

1o table (PISA_short$CNT) # N

111 table(nData$country) # ¢

s ##### (4) Inspecting the Data III: Distribution of Variables
117 ## Raw Data
9 # univariate

20 @ <- ggplot (PISA_short, aes(x=CREATAS, fill=CNT)) +
121 geom_histogram(show.legend = FALSE, position = "identity", alpha=0.5) +



128

129

144

148

154

155

156

b

#
(¢

scale_x_continuous (name="Creative Activities at School (CREATAS)", expand
=c(0,0), limits=c(-6, 6)) +
scale_y_continuous (name="Frequency", expand=c(0, 0), limits=c(0, 2000)) +
scale_fill_manual (values=c("#002654", "#ffce®0")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +
labs(title="Raw Data", subtitle="A")

<- ggplot (PISA_short, aes(x=GROSAGR, fill=CNT)) +
geom_histogram(show.legend = FALSE, position = "identity", alpha=0.5) +
scale_x_continuous (name="Growth Mindset (GROSAGR)", expand=c(0,0), limits
=c(-6, 6)) +
scale_y_continuous (name="Frequency", expand=c(0, 0), limits=c(0, 2000)) +
scale_fill_manual (values=c("#002654", "#ffce®0")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +
labs(subtitle="B")

bivariate
<- ggplot (PISA_short, aes(x=CREATAS, y=GROSAGR, col=CNT)) +
geom_point (show.legend = FALSE, alpha=0.3) +
scale_x_continuous (name="Creative Activities at School (CREATAS)", expand
=c(0®, 0), limits=c(-6.5, 6.5)) +
scale_y_continuous (name="Growth Mindset (GROSAGR)", expand=c(0,0), limits
=c(-6, 6)) +
scale_color_manual (values=c("#002654", "#ffce®0")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +
labs(subtitle="C")

## Cluster means

#

estimate cluster means and create data frame

CREATAS_cluster_means <- aggregate(PISA_short$CREATAS, list(PISA_short$

CNTSCHID), FUN=mean, na.rm=TRUE, na.action=NULL)

GROSAGR_cluster_means <- aggregate(PISA_short$GROSAGR, list(PISA_short$

CNTSCHID), FUN=mean, na.rm=TRUE, na.action=NULL)

157 PISA_short <- PISA_short[order (PISA_short$CNTSCHID),]
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160
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164

165

166

167

168

169

185

186

188

189
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191

192

193

194

195

196

197

198

199

country <- cQ)
for (i in l:nrow(PISA_short)){

tmp_j <- PISA_short$CNTSCHIDI[i]
if (i==1){
country <- append(country, PISA_short$CNT[i])
j <- append(j, tmp_j)
} else {
if (tmp_j > tail(j, n=1)){
country <- append(country, PISA_short$CNT[i])
j <- append(j, tmp_j )

PISA_short_cluster_means <- data.frame(j=1:444, country=country, CREATAS=

CREATAS_cluster_means$x, GROSAGR=GROSAGR_cluster_means$x)

# univariate
d <- ggplot(PISA_short_cluster_means, aes(x=CREATAS, fill=country)) +

geom_histogram(show.legend = FALSE, position = "identity", alpha=0.5) +
scale_x_continuous (name="Creative Activities at School (CREATAS)", expand
=c(06, 0,

limits=c(-6, 6)) +
scale_y_continuous (name="Frequency", limits=c(0®, 150), expand=c(0, 0),) +
scale_£fill_manual (name="Country", values=c("#002654", "#ffce®0")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +
guides(colour = guide_legend(override.aes = list(alpha = 1))) +
labs(title="Cluster Means", subtitle="D")

e <- ggplot (PISA_short_cluster_means, aes(x=GROSAGR, fill=country)) +

geom_histogram(show.legend = FALSE, position = "identity", alpha=0.5) +
scale_x_continuous (name="Growth Mindset (GROSAGR)", expand=c(0,0),
limits=c(-6, 6)) +
scale_y_continuous (name="Frequency", limits=c(®, 150), expand=c(®, 0),) +
scale_£fill_manual (name="Country", values=c("#002654", "#ffce®0")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5)) +
guides(colour = guide_legend(override.aes = list(alpha = 1))) +
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4

labs(subtitle="E")

# bivariate

203 £ <- ggplot (PISA_short_cluster_means, aes(x=CREATAS, y=GROSAGR, col=country

)) +
geom_point (alpha=0.3) +
scale_x_continuous(name="Creative Activities at School (CREATAS)", expand
=c(0, 0,
limits=c(-6, 6)
) +

scale_y_continuous (name="Growth Mindset (GROSAGR)", expand=c(0,0),
limits=c(-6, 6)
) +
scale_color_manual (name="Country", values=c("#002654", "#ffce0®0")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),

panel.border = element_rect(color = "grey", f£fill = NA, linewidth =
0.5)) +
guides(colour = guide_legend(override.aes = list(alpha = 1))) +
guides(colour = guide_legend(override.aes = list(alpha = 1))) +

labs(subtitle="F")

a+b+c+d+ e+ f£f+ plot_layout(nrow=2, guides=’collect’) & theme(text
= element_text("serif"), legend.position = "bottom") # Fig.4

3 ##### (5) Inspecting the Data IV: Missing Data

»s ## What is the proportion of missingness?

vis_miss(PISA_short)

# 28% of CREATAS and 20% of GROSAGR missing

# for each country:

table(is.na(PISA_short$CREATAS), PISA_short$CNT)#/nrow(PISA_short)
table(is.na(PISA_short$GROSAGR), PISA_short$CNT)#/nrow(PISA_short)
# numbers from footnote Fig.3

13 ## Is the missingness systematical?

# MCAR: missings are completely independent of other variables and the
missing value itself

# MAR: missings are dependent on other variables but not on the missing
itself

# MNAR: missings are independent of the other variables but they are not
random

## Let’s check the missing patterns (= co-occurence of missings in multiple

variables).
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256
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## (a) descriptive

# by figure with percentages

md.pattern(PISA_short, rotate.names = TRUE) # note this function is from
package mice but mcar_test is from package naniar

rows: missing patterns
numbers to left: cases for each missing pattern
number to right: number of missings in missing pattern

H O H H H

numbers at bottom: number of missing cases for each variable (column) -->
absolute numbers we got in figure before

# 4 patterns

# most often all variables existent (1. row),

8137 / (8137 + 1182 + 312 + 2067) # approx. 70% cases without any missings,
thus, 30% of cases with at least one missing!

# then one missing in CREATAS (2. row),

(1182) / (8137 + 1182 + 312 + 2067) # approx 10% of only missing CREATAS

# then missings in CREATAS and GROSAGR (4. row),

(2067) / (8137 + 1182 + 312 + 2067) # approx 18% of missing CREATAS and
GROSAGR

# Note 10% + 18% add up to the 28% missing cases reported for CREATAS
before

# then one missing in GROSAGR (3. row)

(312) / (8137 + 1182 + 312 + 2067) # approx 3% of only missing GROSAGR

## (b) inferential

# by using Little’s (1988) test that compares patterns of missingness

# HO: MCAR

# H1: not MCAR

# Note CNT and CNTSCHID are perfectly correlated and can thus not be used
in the same test bc of multicollinearity (i.e., singularity)

# we drop CNT

mcar_test (PISA_short[, c("CNTSCHID", "CREATAS", "GROSAGR")])

# test is significant, thus evidence that MCAR does not hold

## explore MAR assumption

» # create missing data indicators (missing=1, existent=0)

PISA_short$missing CREATAS <- ifelse(is.na(PISA_short$CREATAS), yes=1, no
=0)

PISA_short$missing_GROSAGR <- ifelse(is.na(PISA_short$GROSAGR), yes=1, no
:@)

## (a) descriptive
# by correlation table
cor_data <- PISA_short
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299
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cor_data$CNT <- ifelse(cor_data$CNT == "Albania", yes=1, no=0) # recode to
numeric bc character does not work
cor <- cor(cor_data, use = "pairwise.complete.obs")

cor[upper.tri(cor)] <- NA
print(round(cor, 2), na.print="")

# missingness has large correlation with country (0.393 and 0.431)

# missingness has large correlation with cluster (-0.393 and -0.431)

# contingency of missingness (or presence) of both variables is quite large

(0.667), we see this in the missing patterns

# together, this suggest a design effect (i.e., questionnaires not
administered in certain clusters in countries)

# missingness has small correlation with other variable (-0.065 and 0.120)

# most importantly, country has moderate to large correlation with the
other variable (0.425 and -0.235)

## (b) inferential

# by fitting logistic mixed-effects models to predict missingness

# Note that a variable and their missingness indicator cannot be used in
the same model because of multicollinearity (e.g. GROSAGR and missing_
GROSAGR) .

# Thus, we consider one model for each.

# CREATAS

model _CREATAS <- glmer(missing_CREATAS ~ CNT * GROSAGR + (1 | CNTSCHID),
family = binomial, data = PISA_short)

summary (model _CREATAS)

# CNT and GROSAGR predict NA in CREATAS

model _CREATAS_mi <- glmer(missing_CREATAS ~ CNT * missing_GROSAGR + (1 |
CNTSCHID), family = binomial, data = PISA_short)

summary (model _CREATAS_mi)

# CNT, NA in GROSAGR, and their interaction predict NA in CREATAS

# GROSAGR

505 model_GROSAGR <- glmer (missing_GROSAGR ~ CNT * CREATAS + (1 | CNTSCHID),

family = binomial, data = PISA_short)
summary (model_GROSAGR)
# CNT predicts NA in CREATAS
model _GROSAGR_mi <- glmer (missing_GROSAGR ~ CNT * missing_ CREATAS + (1 |
CNTSCHID), family = binomial, data = PISA_short)
summary (model _GROSAGR_mi)
# CNT, NA in CREATAS, and their interaction predict NA in GROSAGR

# evidence for MAR: missingness can be predicted by other variables (or
missingness of other variables) in data and country

3 # thus imputation is warranted, but first we inspect another source of

missingness and estimation problems
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334

##### (6) Reformating I: Balanced Cluster Sizes in LF
# necessary for imputing unbalanced data, and to reformat to WF later

## create new data frame with balanced number of students
PISA_short_balanced <- data.frame(
j = rep(l:g, each=n_max),
i = rep(l:n_max, times=g),
CNTSCHID = rep(NA, n_max*g) , # incomplete
CNTSTUID = rep(NA, n_max*g), # incomplete
CNT = rep(NA, n_max*g),
CREATAS = rep(NA, n_max*g),
GROSAGR = rep(NA, n_max*g),
missing_ CREATAS = rep(l, n_max*g),
missing_GROSAGR = rep(l, n_max*g)

133 # sort data by school

PISA_short <- PISA_short[with(PISA_short, order (CNTSCHID)), ]

# fill in existing data

7 for (j in 1:¢g) {

342

346

348

349

350

351

352

353

school <- unique(PISA_short$CNTSCHID)[j]

students <- filter (PISA_short, CNTSCHID == school)$CNTSTUID

nSchool <- length(students)

PISA_short_balanced$CNTSCHID[((j - 1) * n_max + 1):((j - 1) * n_max +
nSchool)] <- school

PISA_short_balanced$CNTSTUID[((j - 1) * n_max + 1):((j - 1) * n_max +
nSchool)] <- students

PISA_short_balanced$CNT[((j - 1) * n_max + 1):((j - 1) * n_max + n_max)]
<- unique (PISA_short$CNT [which(PISA_short$CNTSCHID == school)])

PISA_short_balanced$CREATAS[((j - 1) * n_max + 1):((j - 1) * n_max +
nSchool)] <- PISA_short$CREATAS [which(PISA_short$CNTSCHID == school)]

PISA_short_balanced$GROSAGR[((j - 1) * n_max + 1):((j - 1) * n_max +
nSchool)] <- PISA_short$GROSAGR [which(PISA_short$CNTSCHID == school)]

PISA_short_balanced$missing CREATAS[((j - 1) * n_max + 1):((j - 1) * n_
max + nSchool)] <- PISA_short$missing_ CREATAS[which(PISA_short$CNTSCHID
== school)]

PISA_short_balanced$missing_GROSAGR[((j - 1) * n_max + 1):((j - 1) * n_
max + nSchool)] <- PISA_short$missing_GROSAGR[which(PISA_short$CNTSCHID
== school)]

# Now N=n_max*g = 19980 level-1 units.
# Final subsample per country: g*n_max = N
table(nData$country) *n_max
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354 # "genuine" missings and unbalanced data

355 table (PISA_short_balanced$missing CREATAS, PISA_short_balanced$CNT)
356 table (PISA_short_balanced$missing_GROSAGR, PISA_short_balanced$CNT)
357 # numbers from footnote Fig.4

301 ##### (7) Multiple Imputation

32 # in LF and country-wise

363

i # set imputation method for CREATAS and GROSAGR

35 meth <- mice(PISA_short_balanced, maxit = 0)$method

300 meth["CNTSCHID"] <- ""

37 meth[c("CREATAS", "GROSAGR")] <- "2l.pan" # homogeneous variances in each
group (i.e., country) assumed

30 # create imputation models for CREATAS and GROSAGR
30 pred <- make.predictorMatrix(PISA_short_balanced)

s pred[ , "j"] <- -2 # Set cluster variable

32 pred[e("j", "i", "CNTSCHID", "CNTSTUID", "CNT", "missing_CREATAS", "missing
_GROSAGR"), ] <- ® # no models for these variables

373 pred[ , c("i", "CNTSCHID", "CNTSTUID", "CNT", "missing_CREATAS", "missing_

GROSAGR") ] <- 0 # not used as predictors ###### no CNT

75 # impute

776 imp_Albania <- mice(filter (PISA_short_balanced, CNT == "Albania"),
predictorMatrix = pred, method = meth, seed = 123)
377 imp_Ireland <- mice(filter (PISA_short_balanced, CNT == "Ireland"),

predictorMatrix = pred, method = meth, seed = 123)

379 # inspect single imputed data sets

350 stripplot (imp_Albania, CREATAS, pch = 19, xlab
331 stripplot(imp_Ireland, CREATAS, pch = 19, xlab
32 stripplot(imp_Albania, GROSAGR, pch = 19, xlab
33 stripplot(imp_Ireland, GROSAGR, pch = 19, xlab
334 # Because the imputed data sets appear quite similar, we will combine them

"Imputation number")

"Imputation number")

"Imputation number")

"Imputation number")

instead of estimating models for each

3ss # data set and pooled the results.

386

337 # compare descriptive stats of existent and imputed data (Tab.1)

335 ex_Alb <- describe(select (PISA_short_balanced[PISA_short_balanced$CNT == "

Albania",], CREATAS, GROSAGR))

imp_Alb <- describe(select(complete(imp_Albania), CREATAS, GROSAGR))

390 ex_Ire <- describe(select(PISA_short_balanced[PISA_short_balanced$CNT == "
Ireland",], CREATAS, GROSAGR))

1 imp_Ire <- describe(select(complete(imp_Ireland), CREATAS, GROSAGR))

32 # for both countries, mean and sd are quite similar in the existent and

3

imputed data
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426

# combine imputed data sets of both groups (i.e., countries)
PISA_short_balanced_imp <- rbind(complete(imp_Albania), complete(imp_
Ireland))

# plot imputed data (Fig.5)
ggplot (PISA_short_balanced_imp, aes(x=CREATAS, y=GROSAGR, col=CNT)) +
geom_point (data = transform(PISA_short_balanced_imp, CNT = NULL), col="
grey85", alpha=0.5) +
geom_point (show.legend = FALSE, alpha=0.3) +
facet_grid(CNT ~ missing_CREATAS, margins=TRUE, # adds an additional
facet for all levels combined
labeller=as_labeller(c(’0’="Existent", ’1’="Imputed"”, ’(all)’=
"All", ’Albania’="Albania", ’Ireland’="Ireland"))) +
scale_x_continuous(name="Creative Activities at School (CREATAS)", expand
=c(0, 0), limits=c(-6.5, 6.5)) +
scale_y_continuous (name="Growth Mindset (GROSAGR)", expand=c(0.05,0.05),
limits=c(-6, 6)) +
scale_color_manual (values=c("#002654", "#ffce00", "black")) +
theme_minimal () +
theme (text = element_text(family="serif"), panel.grid.minor = element_
blank (),
panel .border = element_rect(color = "grey", fill = NA, linewidth =
0.5))

##### (8) Reformating II: Format LF to WF

3 # where each row corresponds to a school

PISA_short_balanced_imp_WF <- select(PISA_short_balanced_imp, -c("CNTSCHID"
, "CNTSTUID", "missing_CREATAS", "missing_GROSAGR")) # drop variables,
otherwise formating faulty

PISA_short_balanced_imp_WF <- pivot_wider (PISA_short_balanced_imp_WF, names
_from = i, values_from = c("CREATAS", "GROSAGR"), names_sep = ".")

##### (9) Model Estimation

## Homogeneity/Heterogeneity is set differently for both levels:
# Level-1: in model syntax (by using same or different parameter labels)

» # Level-2: with function parameter group .equal = c("lv.variances", "lv.

covariances") (by setting it or leaving it out)

# Thus, the model syntax below is the same for all models.

# (Note that the variances at each level in the homogeneous models equal
the pooled variances in the heterogeneous models.)

7 varNames <- c("CREATAS", "GROSAGR") # variable names in vector required for



loop
25 p <- length(varNames)

3o ## within (p*n)

432 # means set to O

33 means_w <- c()

44 tmp <- c¢Q)

435 count <- 0

136 for (j in 1:p){

437 for (i in 1:n_max){
438 count <- count + 1

439 tmp[count] <- paste®(varNames[j], ".",

a1}

42 means_w <- paste(tmp, collapse = "; ")

us ## between (p)

w7 # factor loadings

ws fac_load_b <- cQ)

o tmp <- c¢(Q)

50 for (j in 1:p){

451 for (i in 1:n_max){

452 tmp[i] <- paste®("1*", varNames[j], "

s}

454 fac_load_b[j] <- paste®("f", varNames[j]
)

155 }

156 fac_load_b <- paste(fac_load_b, collapse="

iss # variances and means

fac_var_b <- cQ

w0 fac_int_b <- cQ

161 for (j in 1:p){

462 fac_var_b[j] <- paste®O("f", varNames[j],

N

463 fac_int_b[j] <- paste®("f", varNames[j],
464}

w5 fac_var_b <- paste(fac_var_b, collapse=";
wo fac_int_b <- paste(fac_int_b, collapse=";

408 # covariances

40 fac_cov_b <- cQ)

470 count <- 0

71 for(j in 1:p){

472 for(m in 1:p){

473 if(j l=m&m > j){

i, n~®*1n)

D)

=~

D)

"~~f" ;
n~1||)

")
")

paste(tmp,

varNames[j])

collapse="+")

&) 923
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516

count <- count + 1

s}

fac_cov_b[count] <- paste®("f", varNames[j], "~~", "f", varNames[m])
b
3
fac_cov_b <- paste(fac_cov_b, collapse = "; ")
model _WF_B <- paste(fac_load_b, fac_var_b, fac_cov_b, fac_int_b, sep="; ")

### Model with Homogeneous Within- and Between-Cluster (Co)variances

## within (p*n)

# variances

tmp2 <- c()

resid_var_w_homo <- c()

tmp3 <- cQ)

for (j in 1:p){

for (i in 1:n_max){

tmp2[i] <- paste®(varNames[j], ".", i)
tmp3[i] <- paste®(Ctmp2[i], '
"_both)*", tmp2[i]) # same label for parameter ACROSS groups

'~~c (", varNames[j], "_both, ", varNames[j],

3
resid_var_w_homo[j] <- paste(tmp3, collapse="; ")
h
resid_var_w_homo <- paste(resid_var_w_homo, collapse="; ")

# covariances
resid_cov_w_homo <- c()
count <- 0
for (i in 1:n_max){
for(j in 1:p){
for(m in 1:p){
if(j '=m&m > j){
count <- count + 1

3

resid_cov_w_homo[count] <- paste®(varNames[j], ".", i, "~~c(",
varNames[j], "_", varNames[m], "_both, ", varNames[j], "_", varNames[m],
"_both)*", varNames[m], ".", i) # same label for parameter ACROSS
groups
3
}
3
resid_cov_w_homo <- paste(resid_cov_w_homo, collapse="; ")

model _WF_W_homo <- paste(resid_var_w_homo, resid_cov_w_homo, means_w, sep =
ey
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s;s model_WFmultigroup_homo <- paste(model_WF_W_homo, model_WF_B, sep="; ")

50 fit_WFmultigroup_homo <- sem(model = model_WFmultigroup_homo,

521 data = PISA_short_balanced_imp_WF,
522 group="CNT",
523 group.equal = c("lv.variances", "lv.

covariances"))

s summary (fit_WFmultigroup_homo)

525

526

527 ## the "genuine" lavaan ML MG SEM returns very similar estimates in the
most recent version on Github (0.6-19.2186).

s23 # Note that here only the function parameter "group.equal" controls whether
a fully homogeneous/heterogeneous model is estimated.

529

s3 model _MLMGSEM <- c(

532 Group: 1

533 Level: 1

534 CREATAS ~~ CREATAS

535 GROSAGR ~~ GROSAGR

536 CREATAS ~~ GROSAGR

537 Level: 2

538 CREATAS ~~ CREATAS

539 GROSAGR ~~ GROSAGR

540 CREATAS ~~ GROSAGR

542 Group: 2

543 Level: 1

544 CREATAS ~~ CREATAS

545 GROSAGR ~~ GROSAGR

546 CREATAS ~~ GROSAGR

547 Level: 2

548 CREATAS ~~ CREATAS

549 GROSAGR ~~ GROSAGR

550 CREATAS ~~ GROSAGR

ss2 ) # Note that the same model syntax is used for the fully heterogeneous
model later.

553 # Alternatively, one could use parameter labels to denote homogeneous (i.e
., same label in both groups) or heterogeneous (i.e., differen labels in
both groups) parameters

ssa # (just as in the WFmultigroup approach; see also the models that are
heterogeneous at one level in the genuine ML MG SEM approach).

sso £fit_MLMGSEM_homo <- sem(model = model_MLMGSEM,
557 data = PISA_short_balanced_imp, # data in LF!
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cluster="j",
group="CNT",
group.equal = c("residuals", "residual.covariances")
# homogeneous
)
summary (fit_MLMGSEM_homo)

### Model with Heterogeneous Within-Cluster (Co)variances

## within (p*n)

# variances (with n-wise equality constraints)
tmp2 <- c(Q)

> tmp3 <- c()
;s resid_var_w_hetero <- c()

for (j in 1:p){
for (i in 1:n_max){

tmp2[i] <- paste®(varNames[j], ".", i)
tmp3[i] <- paste®(tmp2[i], "~~c(", varNames[j], "_albania, ", varNames[
j1, "_ireland)*", tmp2[i]) # same label for parameter WITHIN groups
b
resid_var_w_hetero[j] <- paste(tmp3, collapse="; ")
}
resid_var_w_hetero <- paste(resid_var_w_hetero, collapse="; ")

ss3 # covariances (with n-wise equality constraints)

resid_cov_w_hetero <- c()
count <- 0
for (i in 1:n_max){
for(j in 1:p){
for(m in 1:p){
if(j '=mé&m > j){
count <- count + 1

resid_cov_w_hetero[count] <- paste®(varNames[j], ".", i, "~~c(",
varNames[j], "_", varNames[m], "_albania, ", varNames[j], "_", varNames[
m], "_ireland)*", varNames[m], ".", i) # same label for parameter WITHIN
groups
Iy
i
}

}
resid_cov_w_hetero <- paste(resid_cov_w_hetero, collapse="; ")

model _WF_W_hetero <- paste(resid_var_w_hetero, resid_cov_w_hetero, means_w,

sep = "; ")
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model _WFmultigroup_hetero_B <- paste(model_WF_W_homo, model_WF_B,

fit_WFmultigroup_hetero_B <- sem(model =
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")

sep=";

model _WFmultigroup_hetero_B,

data = PISA_short_balanced_imp_WF,

group="CNT"#

#group.equal

covariances")

)

summary (fit_WFmultigroup_hetero_B)

= c("lv.variances", "lv.

## Here you have to use the most recent version on Github (0.6-19.2186)

again with its "genuine" ML MG SEM which yields very similar estimates.

model _MLMGSEM_hetero_B <- c(

fit_MLMGSEM_hetero_B <- sem(model =

D

Group: 1
Level: 1
CREATAS ~~
GROSAGR ~~
CREATAS ~~
Level: 2
CREATAS ~~
GROSAGR ~~
CREATAS ~~

Group: 2
Level: 1
CREATAS ~~
GROSAGR ~~
CREATAS ~~
Level: 2
CREATAS ~~
GROSAGR ~~
CREATAS ~~

CREATAS _both*CREATAS
GROSAGR_both*GROSAGR
CREATAS_GROSAGR_both*GROSAGR

CREATAS _albania*CREATAS
GROSAGR_albania*GROSAGR
CREATAS _GROSAGR_albania*GROSAGR

CREATAS _both*CREATAS
GROSAGR_both*GROSAGR
CREATAS _GROSAGR_both*GROSAGR

CREATAS _ireland*CREATAS
GROSAGR_ireland*GROSAGR
CREATAS _GROSAGR_ireland*GROSAGR

cluster="3j",
group="CNT"

summary (fit_MLMGSEM_hetero_B)

model _MLMGSEM_hetero_B,
data = PISA_short_

balanced_imp,
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o1 ### Model with Heterogeneous Within and Between-Cluster (Co)variances

692

c0; model _WFmultigroup_hetero_WB <- paste(model_WF_W_hetero, model_WF_B, sep=";
")

694

605 fit_WFmultigroup_hetero_WB <- sem(model = model_WFmultigroup_hetero_WB,

696 data = PISA_short_balanced_imp_WF,

697 group="CNT"#,

698 #group.equal = c("lv.variances", "lv.
covariances")

699 )

700 summary (fit_WFmultigroup_hetero_WB)
700 ## the "genuine" lavaan ML MG SEM returns very similar estimates

704 £it_MLMGSEM_hetero_WB <- sem(model = model_MLMGSEM,

705 data = PISA_short_balanced_imp,

706 cluster="j",

707 group="CNT"#,

708 #group.equal = c("residuals", "residual.covariances
")

709 )

710 summary (fit_MLMGSEM_hetero_WB)

714 ### Model Comparisons

716 anova (fit_WFmultigroup_homo, fit_WFmultigroup_hetero_W)

717 anova (fit_WFmultigroup_homo, fit_WFmultigroup_hetero_B)

715 anova(fit_WFmultigroup_homo, fit_WFmultigroup_hetero_WB)

719 anova(fit_WFmultigroup_hetero_B, fit_WFmultigroup_hetero_WB)

70 # the most complex model, that has heterogeneous within- and between-
cluster (co)variances, fits the data best



	Multilevel Multigroup Structural Equation Modeling In A Single-Level Framework
	Abstract
	The WFmultigroup Approach
	Background
	How It Works
	Sample Size Requirements

	Simulation Study
	Method
	Data Generation
	Data Analysis
	Evaluation Criteria

	Results

	An Empirical Illustration
	Data Set
	The Sample
	The Observed Variables

	Model Specification
	Model Parameter Estimates

	General Discussion
	Disclosure statement
	Orcid
	References


